Methods of Functional and Harmonic Analysis and PDE with Singularities

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174024/RS//

Methods of Functional and Harmonic Analysis and PDE with Singularities (en)
Методе функционалне и хармонијске анализе и ПДЈ са сингуларитетима (sr)
Metode funkcionalne i harmonijske analize i PDJ sa singularitetima (sr_RS)
Authors

Publications

An algebraic approach to tempered ultradistributions

Jakšić, Smiljana; Maksimović, Snjezana; Pilipović, Stevan

(2018)

TY  - JOUR
AU  - Jakšić, Smiljana
AU  - Maksimović, Snjezana
AU  - Pilipović, Stevan
PY  - 2018
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/920
AB  - We construct the space of pseudo-quotients that is shown to be isomorphic to the spaces of Beurling tempered ultradistributions.
T2  - Journal of Mathematical Analysis and Applications
T1  - An algebraic approach to tempered ultradistributions
EP  - 935
IS  - 1
SP  - 927
VL  - 466
DO  - 10.1016/j.jmaa.2018.06.033
UR  - conv_1355
ER  - 
@article{
author = "Jakšić, Smiljana and Maksimović, Snjezana and Pilipović, Stevan",
year = "2018",
abstract = "We construct the space of pseudo-quotients that is shown to be isomorphic to the spaces of Beurling tempered ultradistributions.",
journal = "Journal of Mathematical Analysis and Applications",
title = "An algebraic approach to tempered ultradistributions",
pages = "935-927",
number = "1",
volume = "466",
doi = "10.1016/j.jmaa.2018.06.033",
url = "conv_1355"
}
Jakšić, S., Maksimović, S.,& Pilipović, S.. (2018). An algebraic approach to tempered ultradistributions. in Journal of Mathematical Analysis and Applications, 466(1), 927-935.
https://doi.org/10.1016/j.jmaa.2018.06.033
conv_1355
Jakšić S, Maksimović S, Pilipović S. An algebraic approach to tempered ultradistributions. in Journal of Mathematical Analysis and Applications. 2018;466(1):927-935.
doi:10.1016/j.jmaa.2018.06.033
conv_1355 .
Jakšić, Smiljana, Maksimović, Snjezana, Pilipović, Stevan, "An algebraic approach to tempered ultradistributions" in Journal of Mathematical Analysis and Applications, 466, no. 1 (2018):927-935,
https://doi.org/10.1016/j.jmaa.2018.06.033 .,
conv_1355 .
1

G -type spaces of ultradistributions over R + d and the Weyl pseudo-differential operators with radial symbols

Jakšić, Smiljana; Pilipović, Stevan; Prangoski, Bojan

(2017)

TY  - JOUR
AU  - Jakšić, Smiljana
AU  - Pilipović, Stevan
AU  - Prangoski, Bojan
PY  - 2017
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/825
AB  - The first part of the paper is devoted to the G-type spaces i.e. the spaces G(alpha)(alpha)(R-+(d)), alpha  gt = 1 and their duals which can be described as analogous to the Gelfand-Shilov spaces and their duals but with completely new justification of obtained results. The Laguerre type expansions of the elements in G(alpha)(alpha) (R-+(d)), alpha  gt = 1 and their duals characterise these spaces through the exponential and sub-exponential growth of coefficients. We provide the full topological description and by the nuclearity of G(alpha)(alpha)(R-+(d)), alpha  gt = 1 the kernel theorem is proved. The second part is devoted to the class of the Weyl operators with radial symbols belonging to the G-type spaces. The continuity properties of this class of pseudo-differential operators over the Gelfand-Shilov type spaces and their duals are proved. In this way the class of the Weyl pseudo-differential operators is extended to the one with the radial symbols with the exponential and sub-exponential growth rate.
T2  - Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas
T1  - G -type spaces of ultradistributions over R + d and the Weyl pseudo-differential operators with radial symbols
EP  - 640
IS  - 3
SP  - 613
VL  - 111
DO  - 10.1007/s13398-016-0313-3
UR  - conv_1273
ER  - 
@article{
author = "Jakšić, Smiljana and Pilipović, Stevan and Prangoski, Bojan",
year = "2017",
abstract = "The first part of the paper is devoted to the G-type spaces i.e. the spaces G(alpha)(alpha)(R-+(d)), alpha  gt = 1 and their duals which can be described as analogous to the Gelfand-Shilov spaces and their duals but with completely new justification of obtained results. The Laguerre type expansions of the elements in G(alpha)(alpha) (R-+(d)), alpha  gt = 1 and their duals characterise these spaces through the exponential and sub-exponential growth of coefficients. We provide the full topological description and by the nuclearity of G(alpha)(alpha)(R-+(d)), alpha  gt = 1 the kernel theorem is proved. The second part is devoted to the class of the Weyl operators with radial symbols belonging to the G-type spaces. The continuity properties of this class of pseudo-differential operators over the Gelfand-Shilov type spaces and their duals are proved. In this way the class of the Weyl pseudo-differential operators is extended to the one with the radial symbols with the exponential and sub-exponential growth rate.",
journal = "Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas",
title = "G -type spaces of ultradistributions over R + d and the Weyl pseudo-differential operators with radial symbols",
pages = "640-613",
number = "3",
volume = "111",
doi = "10.1007/s13398-016-0313-3",
url = "conv_1273"
}
Jakšić, S., Pilipović, S.,& Prangoski, B.. (2017). G -type spaces of ultradistributions over R + d and the Weyl pseudo-differential operators with radial symbols. in Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas, 111(3), 613-640.
https://doi.org/10.1007/s13398-016-0313-3
conv_1273
Jakšić S, Pilipović S, Prangoski B. G -type spaces of ultradistributions over R + d and the Weyl pseudo-differential operators with radial symbols. in Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas. 2017;111(3):613-640.
doi:10.1007/s13398-016-0313-3
conv_1273 .
Jakšić, Smiljana, Pilipović, Stevan, Prangoski, Bojan, "G -type spaces of ultradistributions over R + d and the Weyl pseudo-differential operators with radial symbols" in Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas, 111, no. 3 (2017):613-640,
https://doi.org/10.1007/s13398-016-0313-3 .,
conv_1273 .
15
10
14

Relations between Hermite and Laguerre expansions of ultradistributions over R d and R + d

Jakšić, Smiljana; Maksimović, Snjezana; Pilipović, Stevan; Prangoski, Bojan

(2017)

TY  - JOUR
AU  - Jakšić, Smiljana
AU  - Maksimović, Snjezana
AU  - Pilipović, Stevan
AU  - Prangoski, Bojan
PY  - 2017
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/814
AB  - The aim of this paper is twofold. Firstly, to show the existence of topological isomorphism between the G-type spaces G(alpha)(alpha) (R-+(d)), alpha  gt = 1 and the subspaces of the Gelfand-Shilov spaces S-alpha/2 (alpha/2) (Rd), alpha  gt = 1, consisting of "even" functions. The same is done for their dual spaces. Secondly, to obtain two structural theorems for the dual spaces (G(alpha)(alpha)(R-+(d)))', alpha  gt = 1.
T2  - Journal of Pseudo-Differential Operators and Applications
T1  - Relations between Hermite and Laguerre expansions of ultradistributions over R d and R + d
EP  - 296
IS  - 2
SP  - 275
VL  - 8
DO  - 10.1007/s11868-016-0171-y
UR  - conv_1268
ER  - 
@article{
author = "Jakšić, Smiljana and Maksimović, Snjezana and Pilipović, Stevan and Prangoski, Bojan",
year = "2017",
abstract = "The aim of this paper is twofold. Firstly, to show the existence of topological isomorphism between the G-type spaces G(alpha)(alpha) (R-+(d)), alpha  gt = 1 and the subspaces of the Gelfand-Shilov spaces S-alpha/2 (alpha/2) (Rd), alpha  gt = 1, consisting of "even" functions. The same is done for their dual spaces. Secondly, to obtain two structural theorems for the dual spaces (G(alpha)(alpha)(R-+(d)))', alpha  gt = 1.",
journal = "Journal of Pseudo-Differential Operators and Applications",
title = "Relations between Hermite and Laguerre expansions of ultradistributions over R d and R + d",
pages = "296-275",
number = "2",
volume = "8",
doi = "10.1007/s11868-016-0171-y",
url = "conv_1268"
}
Jakšić, S., Maksimović, S., Pilipović, S.,& Prangoski, B.. (2017). Relations between Hermite and Laguerre expansions of ultradistributions over R d and R + d. in Journal of Pseudo-Differential Operators and Applications, 8(2), 275-296.
https://doi.org/10.1007/s11868-016-0171-y
conv_1268
Jakšić S, Maksimović S, Pilipović S, Prangoski B. Relations between Hermite and Laguerre expansions of ultradistributions over R d and R + d. in Journal of Pseudo-Differential Operators and Applications. 2017;8(2):275-296.
doi:10.1007/s11868-016-0171-y
conv_1268 .
Jakšić, Smiljana, Maksimović, Snjezana, Pilipović, Stevan, Prangoski, Bojan, "Relations between Hermite and Laguerre expansions of ultradistributions over R d and R + d" in Journal of Pseudo-Differential Operators and Applications, 8, no. 2 (2017):275-296,
https://doi.org/10.1007/s11868-016-0171-y .,
conv_1268 .
6
4
5

Extension theorem of whitney type for s (r + d ) by use of the kernel theorem

Jakšić, Smiljana; Prangoski, Bojan

(Srpska akademija nauka i umetnosti SANU - Matematički institut, Beograd, 2016)

TY  - JOUR
AU  - Jakšić, Smiljana
AU  - Prangoski, Bojan
PY  - 2016
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/779
AB  - We study the expansions of the elements in S(R-+(d)) and S'(R-+(d)) with respect to the Laguerre orthonormal basis, extending the result of M. Guillemot-Teissier in the one dimensional case. As a consequence, we obtain Kernel theorem for S(R-+(d)) and S'(R-+(d)) and an extension theorem of Whitney type for S(R-+(d)).
PB  - Srpska akademija nauka i umetnosti SANU - Matematički institut, Beograd
T2  - Publications de l Institut Mathematique-Beograd
T1  - Extension theorem of whitney type for s (r + d ) by use of the kernel theorem
EP  - 65
IS  - 113
SP  - 59
VL  - 99
DO  - 10.2298/PIM1613059J
UR  - conv_1261
ER  - 
@article{
author = "Jakšić, Smiljana and Prangoski, Bojan",
year = "2016",
abstract = "We study the expansions of the elements in S(R-+(d)) and S'(R-+(d)) with respect to the Laguerre orthonormal basis, extending the result of M. Guillemot-Teissier in the one dimensional case. As a consequence, we obtain Kernel theorem for S(R-+(d)) and S'(R-+(d)) and an extension theorem of Whitney type for S(R-+(d)).",
publisher = "Srpska akademija nauka i umetnosti SANU - Matematički institut, Beograd",
journal = "Publications de l Institut Mathematique-Beograd",
title = "Extension theorem of whitney type for s (r + d ) by use of the kernel theorem",
pages = "65-59",
number = "113",
volume = "99",
doi = "10.2298/PIM1613059J",
url = "conv_1261"
}
Jakšić, S.,& Prangoski, B.. (2016). Extension theorem of whitney type for s (r + d ) by use of the kernel theorem. in Publications de l Institut Mathematique-Beograd
Srpska akademija nauka i umetnosti SANU - Matematički institut, Beograd., 99(113), 59-65.
https://doi.org/10.2298/PIM1613059J
conv_1261
Jakšić S, Prangoski B. Extension theorem of whitney type for s (r + d ) by use of the kernel theorem. in Publications de l Institut Mathematique-Beograd. 2016;99(113):59-65.
doi:10.2298/PIM1613059J
conv_1261 .
Jakšić, Smiljana, Prangoski, Bojan, "Extension theorem of whitney type for s (r + d ) by use of the kernel theorem" in Publications de l Institut Mathematique-Beograd, 99, no. 113 (2016):59-65,
https://doi.org/10.2298/PIM1613059J .,
conv_1261 .
9
8
11