Jakšić, Smiljana

Link to this page

Authority KeyName Variants
orcid::0000-0001-6207-9402
  • Jakšić, Smiljana (10)
Projects

Author's Bibliography

The Spaces of Ultradistributions Over ℝ+d and the Weyl Calculus of Pseudo-Differential Operators

Jakšić, Smiljana; Pilipović, S.

(Springer Science and Business Media Deutschland GmbH, 2024)

TY  - CHAP
AU  - Jakšić, Smiljana
AU  - Pilipović, S.
PY  - 2024
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1473
AB  - In this paper we introduce classes of ultradifferentiable functions and the corresponding ultradistributions on ℝ+d, i.e. Gαβ(ℝ+d) and (Gαβ(ℝ+d))′, α,β gt 0, respectively. We give their characterisation through the Laguerre coefficients estimate. Furthermore, we define the modified fractional power of the partial Hankel-Clifford transform and show that this transformation is a topological isomorphism on Gαα(ℝ+d), α≥1. We also investigate the boundedness of the Weyl pseudo-differential operators with symbols from the previously introduced spaces.
PB  - Springer Science and Business Media Deutschland GmbH
T2  - Trends in Mathematics
T1  - The Spaces of Ultradistributions Over ℝ+d and the Weyl Calculus of Pseudo-Differential Operators
EP  - 207
SP  - 197
VL  - 5
DO  - 10.1007/978-3-031-57005-6_21
UR  - conv_1863
ER  - 
@inbook{
author = "Jakšić, Smiljana and Pilipović, S.",
year = "2024",
abstract = "In this paper we introduce classes of ultradifferentiable functions and the corresponding ultradistributions on ℝ+d, i.e. Gαβ(ℝ+d) and (Gαβ(ℝ+d))′, α,β gt 0, respectively. We give their characterisation through the Laguerre coefficients estimate. Furthermore, we define the modified fractional power of the partial Hankel-Clifford transform and show that this transformation is a topological isomorphism on Gαα(ℝ+d), α≥1. We also investigate the boundedness of the Weyl pseudo-differential operators with symbols from the previously introduced spaces.",
publisher = "Springer Science and Business Media Deutschland GmbH",
journal = "Trends in Mathematics",
booktitle = "The Spaces of Ultradistributions Over ℝ+d and the Weyl Calculus of Pseudo-Differential Operators",
pages = "207-197",
volume = "5",
doi = "10.1007/978-3-031-57005-6_21",
url = "conv_1863"
}
Jakšić, S.,& Pilipović, S.. (2024). The Spaces of Ultradistributions Over ℝ+d and the Weyl Calculus of Pseudo-Differential Operators. in Trends in Mathematics
Springer Science and Business Media Deutschland GmbH., 5, 197-207.
https://doi.org/10.1007/978-3-031-57005-6_21
conv_1863
Jakšić S, Pilipović S. The Spaces of Ultradistributions Over ℝ+d and the Weyl Calculus of Pseudo-Differential Operators. in Trends in Mathematics. 2024;5:197-207.
doi:10.1007/978-3-031-57005-6_21
conv_1863 .
Jakšić, Smiljana, Pilipović, S., "The Spaces of Ultradistributions Over ℝ+d and the Weyl Calculus of Pseudo-Differential Operators" in Trends in Mathematics, 5 (2024):197-207,
https://doi.org/10.1007/978-3-031-57005-6_21 .,
conv_1863 .

Global regularity of Weyl pseudo-differential operators with radial symbols in each phase-space variable

Jakšić, Smiljana; Pilipović, Stevan; Prangoski, Bojan

(2023)

TY  - JOUR
AU  - Jakšić, Smiljana
AU  - Pilipović, Stevan
AU  - Prangoski, Bojan
PY  - 2023
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1413
AB  - We analyse a class of pseudo-differential operators in the Gelfand-Shilov setting whose Weyl symbols are radial in each phase-space variable separately. Namely, the symbols are of the forma(& thetasym;)(x,xi) := a(2x(1)(2) + 2 xi(2)(1), . . ., 2x(d)(2) + 2 xi(2)(d)),where a is a measurable function on R-+(d):= {r is an element of R-d | r(j) gt  0, j = 1, ... , d} and has Gelfand-Shilov L-p-growths. We prove that the action of these pseudo-differential operators on a Gelfand-Shilov ultradistribution f can be given by a series of Her-mite functions with coefficients that are explicitly computed in terms of the Laguerre coefficients of a and the Hermite coefficients of f . As a consequence, we give a characterisation of the functions a in terms of the growths of their Laguerre coefficients for which the Weyl quantisation of a(& thetasym;) are globally Gelfand-Shilov regular.
T2  - Journal of Pseudo-Differential Operators and Applications
T1  - Global regularity of Weyl pseudo-differential operators with radial symbols in each phase-space variable
IS  - 1
VL  - 14
DO  - 10.1007/s11868-023-00505-x
UR  - conv_1681
ER  - 
@article{
author = "Jakšić, Smiljana and Pilipović, Stevan and Prangoski, Bojan",
year = "2023",
abstract = "We analyse a class of pseudo-differential operators in the Gelfand-Shilov setting whose Weyl symbols are radial in each phase-space variable separately. Namely, the symbols are of the forma(& thetasym;)(x,xi) := a(2x(1)(2) + 2 xi(2)(1), . . ., 2x(d)(2) + 2 xi(2)(d)),where a is a measurable function on R-+(d):= {r is an element of R-d | r(j) gt  0, j = 1, ... , d} and has Gelfand-Shilov L-p-growths. We prove that the action of these pseudo-differential operators on a Gelfand-Shilov ultradistribution f can be given by a series of Her-mite functions with coefficients that are explicitly computed in terms of the Laguerre coefficients of a and the Hermite coefficients of f . As a consequence, we give a characterisation of the functions a in terms of the growths of their Laguerre coefficients for which the Weyl quantisation of a(& thetasym;) are globally Gelfand-Shilov regular.",
journal = "Journal of Pseudo-Differential Operators and Applications",
title = "Global regularity of Weyl pseudo-differential operators with radial symbols in each phase-space variable",
number = "1",
volume = "14",
doi = "10.1007/s11868-023-00505-x",
url = "conv_1681"
}
Jakšić, S., Pilipović, S.,& Prangoski, B.. (2023). Global regularity of Weyl pseudo-differential operators with radial symbols in each phase-space variable. in Journal of Pseudo-Differential Operators and Applications, 14(1).
https://doi.org/10.1007/s11868-023-00505-x
conv_1681
Jakšić S, Pilipović S, Prangoski B. Global regularity of Weyl pseudo-differential operators with radial symbols in each phase-space variable. in Journal of Pseudo-Differential Operators and Applications. 2023;14(1).
doi:10.1007/s11868-023-00505-x
conv_1681 .
Jakšić, Smiljana, Pilipović, Stevan, Prangoski, Bojan, "Global regularity of Weyl pseudo-differential operators with radial symbols in each phase-space variable" in Journal of Pseudo-Differential Operators and Applications, 14, no. 1 (2023),
https://doi.org/10.1007/s11868-023-00505-x .,
conv_1681 .
1
1

ψDOs with radial symbols and spaces of type G

Jakšić, Smiljana; Pilipović, Stevan

(Univerzitet u Nišu - Prirodno-matematički fakultet - Departmant za matematiku i informatiku, Niš, 2023)

TY  - JOUR
AU  - Jakšić, Smiljana
AU  - Pilipović, Stevan
PY  - 2023
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1386
AB  - We investigate various G type spaces on Rd+ and their relations with the Gelfand-Shilov S type spaces on R2d through the mapping w : R2d-* Rd+, w(x, & xi;) = (2x21 + 2 & xi;21, ... , 2x2d + 2 & xi;2d). Sufficient conditions for the hypoellipticity of symbols originating from the coordinante radial symbols in G type spaces are also given. Two open problems explained in the introduction are posed.
PB  - Univerzitet u Nišu - Prirodno-matematički fakultet - Departmant za matematiku i informatiku, Niš
T2  - Filomat
T1  - ψDOs with radial symbols and spaces of type G
EP  - 8763
IS  - 26
SP  - 8755
VL  - 37
DO  - 10.2298/FIL2326755J
UR  - conv_1718
ER  - 
@article{
author = "Jakšić, Smiljana and Pilipović, Stevan",
year = "2023",
abstract = "We investigate various G type spaces on Rd+ and their relations with the Gelfand-Shilov S type spaces on R2d through the mapping w : R2d-* Rd+, w(x, & xi;) = (2x21 + 2 & xi;21, ... , 2x2d + 2 & xi;2d). Sufficient conditions for the hypoellipticity of symbols originating from the coordinante radial symbols in G type spaces are also given. Two open problems explained in the introduction are posed.",
publisher = "Univerzitet u Nišu - Prirodno-matematički fakultet - Departmant za matematiku i informatiku, Niš",
journal = "Filomat",
title = "ψDOs with radial symbols and spaces of type G",
pages = "8763-8755",
number = "26",
volume = "37",
doi = "10.2298/FIL2326755J",
url = "conv_1718"
}
Jakšić, S.,& Pilipović, S.. (2023). ψDOs with radial symbols and spaces of type G. in Filomat
Univerzitet u Nišu - Prirodno-matematički fakultet - Departmant za matematiku i informatiku, Niš., 37(26), 8755-8763.
https://doi.org/10.2298/FIL2326755J
conv_1718
Jakšić S, Pilipović S. ψDOs with radial symbols and spaces of type G. in Filomat. 2023;37(26):8755-8763.
doi:10.2298/FIL2326755J
conv_1718 .
Jakšić, Smiljana, Pilipović, Stevan, "ψDOs with radial symbols and spaces of type G" in Filomat, 37, no. 26 (2023):8755-8763,
https://doi.org/10.2298/FIL2326755J .,
conv_1718 .

The affine ensemble: determinantal point processes associated with the ax plus b group

Abreu, Luis Daniel; Balazs, Peter; Jakšić, Smiljana

(2023)

TY  - JOUR
AU  - Abreu, Luis Daniel
AU  - Balazs, Peter
AU  - Jakšić, Smiljana
PY  - 2023
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1379
AB  - We introduce the affine ensemble, a class of determinantal point processes (DPP) in the half-plane C+ associated with the ax + b (affine) group, depending on an admissible Hardy function 0. We obtain the asymptotic behavior of the variance, the exact value of the asymptotic constant, and non-asymptotic upper and lower bounds for the variance on a compact set it C C. As a special case one recovers the DPP related to the weighted Bergman kernel. When iota l iota is chosen within a finite family whose Fourier transform are Laguerre functions, we obtain the DPP associated to hyperbolic Landau levels, the eigenspaces of the finite spectrum of the Maass Laplacian with a magnetic field.
T2  - Journal of the Mathematical Society of Japan
T1  - The affine ensemble: determinantal point processes associated with the ax plus b group
EP  - 483
IS  - 2
SP  - 469
VL  - 75
DO  - 10.2969/jmsj/88018801
UR  - conv_1708
ER  - 
@article{
author = "Abreu, Luis Daniel and Balazs, Peter and Jakšić, Smiljana",
year = "2023",
abstract = "We introduce the affine ensemble, a class of determinantal point processes (DPP) in the half-plane C+ associated with the ax + b (affine) group, depending on an admissible Hardy function 0. We obtain the asymptotic behavior of the variance, the exact value of the asymptotic constant, and non-asymptotic upper and lower bounds for the variance on a compact set it C C. As a special case one recovers the DPP related to the weighted Bergman kernel. When iota l iota is chosen within a finite family whose Fourier transform are Laguerre functions, we obtain the DPP associated to hyperbolic Landau levels, the eigenspaces of the finite spectrum of the Maass Laplacian with a magnetic field.",
journal = "Journal of the Mathematical Society of Japan",
title = "The affine ensemble: determinantal point processes associated with the ax plus b group",
pages = "483-469",
number = "2",
volume = "75",
doi = "10.2969/jmsj/88018801",
url = "conv_1708"
}
Abreu, L. D., Balazs, P.,& Jakšić, S.. (2023). The affine ensemble: determinantal point processes associated with the ax plus b group. in Journal of the Mathematical Society of Japan, 75(2), 469-483.
https://doi.org/10.2969/jmsj/88018801
conv_1708
Abreu LD, Balazs P, Jakšić S. The affine ensemble: determinantal point processes associated with the ax plus b group. in Journal of the Mathematical Society of Japan. 2023;75(2):469-483.
doi:10.2969/jmsj/88018801
conv_1708 .
Abreu, Luis Daniel, Balazs, Peter, Jakšić, Smiljana, "The affine ensemble: determinantal point processes associated with the ax plus b group" in Journal of the Mathematical Society of Japan, 75, no. 2 (2023):469-483,
https://doi.org/10.2969/jmsj/88018801 .,
conv_1708 .
1
1
1

An algebraic approach to tempered ultradistributions

Jakšić, Smiljana; Maksimović, Snjezana; Pilipović, Stevan

(2018)

TY  - JOUR
AU  - Jakšić, Smiljana
AU  - Maksimović, Snjezana
AU  - Pilipović, Stevan
PY  - 2018
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/920
AB  - We construct the space of pseudo-quotients that is shown to be isomorphic to the spaces of Beurling tempered ultradistributions.
T2  - Journal of Mathematical Analysis and Applications
T1  - An algebraic approach to tempered ultradistributions
EP  - 935
IS  - 1
SP  - 927
VL  - 466
DO  - 10.1016/j.jmaa.2018.06.033
UR  - conv_1355
ER  - 
@article{
author = "Jakšić, Smiljana and Maksimović, Snjezana and Pilipović, Stevan",
year = "2018",
abstract = "We construct the space of pseudo-quotients that is shown to be isomorphic to the spaces of Beurling tempered ultradistributions.",
journal = "Journal of Mathematical Analysis and Applications",
title = "An algebraic approach to tempered ultradistributions",
pages = "935-927",
number = "1",
volume = "466",
doi = "10.1016/j.jmaa.2018.06.033",
url = "conv_1355"
}
Jakšić, S., Maksimović, S.,& Pilipović, S.. (2018). An algebraic approach to tempered ultradistributions. in Journal of Mathematical Analysis and Applications, 466(1), 927-935.
https://doi.org/10.1016/j.jmaa.2018.06.033
conv_1355
Jakšić S, Maksimović S, Pilipović S. An algebraic approach to tempered ultradistributions. in Journal of Mathematical Analysis and Applications. 2018;466(1):927-935.
doi:10.1016/j.jmaa.2018.06.033
conv_1355 .
Jakšić, Smiljana, Maksimović, Snjezana, Pilipović, Stevan, "An algebraic approach to tempered ultradistributions" in Journal of Mathematical Analysis and Applications, 466, no. 1 (2018):927-935,
https://doi.org/10.1016/j.jmaa.2018.06.033 .,
conv_1355 .
1

G -type spaces of ultradistributions over R + d and the Weyl pseudo-differential operators with radial symbols

Jakšić, Smiljana; Pilipović, Stevan; Prangoski, Bojan

(2017)

TY  - JOUR
AU  - Jakšić, Smiljana
AU  - Pilipović, Stevan
AU  - Prangoski, Bojan
PY  - 2017
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/825
AB  - The first part of the paper is devoted to the G-type spaces i.e. the spaces G(alpha)(alpha)(R-+(d)), alpha  gt = 1 and their duals which can be described as analogous to the Gelfand-Shilov spaces and their duals but with completely new justification of obtained results. The Laguerre type expansions of the elements in G(alpha)(alpha) (R-+(d)), alpha  gt = 1 and their duals characterise these spaces through the exponential and sub-exponential growth of coefficients. We provide the full topological description and by the nuclearity of G(alpha)(alpha)(R-+(d)), alpha  gt = 1 the kernel theorem is proved. The second part is devoted to the class of the Weyl operators with radial symbols belonging to the G-type spaces. The continuity properties of this class of pseudo-differential operators over the Gelfand-Shilov type spaces and their duals are proved. In this way the class of the Weyl pseudo-differential operators is extended to the one with the radial symbols with the exponential and sub-exponential growth rate.
T2  - Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas
T1  - G -type spaces of ultradistributions over R + d and the Weyl pseudo-differential operators with radial symbols
EP  - 640
IS  - 3
SP  - 613
VL  - 111
DO  - 10.1007/s13398-016-0313-3
UR  - conv_1273
ER  - 
@article{
author = "Jakšić, Smiljana and Pilipović, Stevan and Prangoski, Bojan",
year = "2017",
abstract = "The first part of the paper is devoted to the G-type spaces i.e. the spaces G(alpha)(alpha)(R-+(d)), alpha  gt = 1 and their duals which can be described as analogous to the Gelfand-Shilov spaces and their duals but with completely new justification of obtained results. The Laguerre type expansions of the elements in G(alpha)(alpha) (R-+(d)), alpha  gt = 1 and their duals characterise these spaces through the exponential and sub-exponential growth of coefficients. We provide the full topological description and by the nuclearity of G(alpha)(alpha)(R-+(d)), alpha  gt = 1 the kernel theorem is proved. The second part is devoted to the class of the Weyl operators with radial symbols belonging to the G-type spaces. The continuity properties of this class of pseudo-differential operators over the Gelfand-Shilov type spaces and their duals are proved. In this way the class of the Weyl pseudo-differential operators is extended to the one with the radial symbols with the exponential and sub-exponential growth rate.",
journal = "Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas",
title = "G -type spaces of ultradistributions over R + d and the Weyl pseudo-differential operators with radial symbols",
pages = "640-613",
number = "3",
volume = "111",
doi = "10.1007/s13398-016-0313-3",
url = "conv_1273"
}
Jakšić, S., Pilipović, S.,& Prangoski, B.. (2017). G -type spaces of ultradistributions over R + d and the Weyl pseudo-differential operators with radial symbols. in Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas, 111(3), 613-640.
https://doi.org/10.1007/s13398-016-0313-3
conv_1273
Jakšić S, Pilipović S, Prangoski B. G -type spaces of ultradistributions over R + d and the Weyl pseudo-differential operators with radial symbols. in Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas. 2017;111(3):613-640.
doi:10.1007/s13398-016-0313-3
conv_1273 .
Jakšić, Smiljana, Pilipović, Stevan, Prangoski, Bojan, "G -type spaces of ultradistributions over R + d and the Weyl pseudo-differential operators with radial symbols" in Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas, 111, no. 3 (2017):613-640,
https://doi.org/10.1007/s13398-016-0313-3 .,
conv_1273 .
15
10
14

Factorization of operators with Gαα(Rd+) and gαα (Rd+) kernels

Jakšić, Smiljana; Maksimović, S.

(Univerzitet u Novom Sadu - Prirodno-matematički fakultet - Departman za matematiku i informatiku, Novi Sad, 2017)

TY  - JOUR
AU  - Jakšić, Smiljana
AU  - Maksimović, S.
PY  - 2017
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/831
AB  - The aim of this paper is to prove that any linear operator with kernel in the spaces Gαα(Rd+), α ≥ 1 and gαα(Rd+), α  gt  1 is a composition of two operators in the same space.
PB  - Univerzitet u Novom Sadu - Prirodno-matematički fakultet - Departman za matematiku i informatiku, Novi Sad
T2  - Novi Sad Journal of Mathematics
T1  - Factorization of operators with Gαα(Rd+) and gαα (Rd+) kernels
EP  - 75
IS  - 1
SP  - 69
VL  - 47
DO  - 10.30755/NSJOM.04349
UR  - conv_2039
ER  - 
@article{
author = "Jakšić, Smiljana and Maksimović, S.",
year = "2017",
abstract = "The aim of this paper is to prove that any linear operator with kernel in the spaces Gαα(Rd+), α ≥ 1 and gαα(Rd+), α  gt  1 is a composition of two operators in the same space.",
publisher = "Univerzitet u Novom Sadu - Prirodno-matematički fakultet - Departman za matematiku i informatiku, Novi Sad",
journal = "Novi Sad Journal of Mathematics",
title = "Factorization of operators with Gαα(Rd+) and gαα (Rd+) kernels",
pages = "75-69",
number = "1",
volume = "47",
doi = "10.30755/NSJOM.04349",
url = "conv_2039"
}
Jakšić, S.,& Maksimović, S.. (2017). Factorization of operators with Gαα(Rd+) and gαα (Rd+) kernels. in Novi Sad Journal of Mathematics
Univerzitet u Novom Sadu - Prirodno-matematički fakultet - Departman za matematiku i informatiku, Novi Sad., 47(1), 69-75.
https://doi.org/10.30755/NSJOM.04349
conv_2039
Jakšić S, Maksimović S. Factorization of operators with Gαα(Rd+) and gαα (Rd+) kernels. in Novi Sad Journal of Mathematics. 2017;47(1):69-75.
doi:10.30755/NSJOM.04349
conv_2039 .
Jakšić, Smiljana, Maksimović, S., "Factorization of operators with Gαα(Rd+) and gαα (Rd+) kernels" in Novi Sad Journal of Mathematics, 47, no. 1 (2017):69-75,
https://doi.org/10.30755/NSJOM.04349 .,
conv_2039 .

Relations between Hermite and Laguerre expansions of ultradistributions over R d and R + d

Jakšić, Smiljana; Maksimović, Snjezana; Pilipović, Stevan; Prangoski, Bojan

(2017)

TY  - JOUR
AU  - Jakšić, Smiljana
AU  - Maksimović, Snjezana
AU  - Pilipović, Stevan
AU  - Prangoski, Bojan
PY  - 2017
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/814
AB  - The aim of this paper is twofold. Firstly, to show the existence of topological isomorphism between the G-type spaces G(alpha)(alpha) (R-+(d)), alpha  gt = 1 and the subspaces of the Gelfand-Shilov spaces S-alpha/2 (alpha/2) (Rd), alpha  gt = 1, consisting of "even" functions. The same is done for their dual spaces. Secondly, to obtain two structural theorems for the dual spaces (G(alpha)(alpha)(R-+(d)))', alpha  gt = 1.
T2  - Journal of Pseudo-Differential Operators and Applications
T1  - Relations between Hermite and Laguerre expansions of ultradistributions over R d and R + d
EP  - 296
IS  - 2
SP  - 275
VL  - 8
DO  - 10.1007/s11868-016-0171-y
UR  - conv_1268
ER  - 
@article{
author = "Jakšić, Smiljana and Maksimović, Snjezana and Pilipović, Stevan and Prangoski, Bojan",
year = "2017",
abstract = "The aim of this paper is twofold. Firstly, to show the existence of topological isomorphism between the G-type spaces G(alpha)(alpha) (R-+(d)), alpha  gt = 1 and the subspaces of the Gelfand-Shilov spaces S-alpha/2 (alpha/2) (Rd), alpha  gt = 1, consisting of "even" functions. The same is done for their dual spaces. Secondly, to obtain two structural theorems for the dual spaces (G(alpha)(alpha)(R-+(d)))', alpha  gt = 1.",
journal = "Journal of Pseudo-Differential Operators and Applications",
title = "Relations between Hermite and Laguerre expansions of ultradistributions over R d and R + d",
pages = "296-275",
number = "2",
volume = "8",
doi = "10.1007/s11868-016-0171-y",
url = "conv_1268"
}
Jakšić, S., Maksimović, S., Pilipović, S.,& Prangoski, B.. (2017). Relations between Hermite and Laguerre expansions of ultradistributions over R d and R + d. in Journal of Pseudo-Differential Operators and Applications, 8(2), 275-296.
https://doi.org/10.1007/s11868-016-0171-y
conv_1268
Jakšić S, Maksimović S, Pilipović S, Prangoski B. Relations between Hermite and Laguerre expansions of ultradistributions over R d and R + d. in Journal of Pseudo-Differential Operators and Applications. 2017;8(2):275-296.
doi:10.1007/s11868-016-0171-y
conv_1268 .
Jakšić, Smiljana, Maksimović, Snjezana, Pilipović, Stevan, Prangoski, Bojan, "Relations between Hermite and Laguerre expansions of ultradistributions over R d and R + d" in Journal of Pseudo-Differential Operators and Applications, 8, no. 2 (2017):275-296,
https://doi.org/10.1007/s11868-016-0171-y .,
conv_1268 .
6
4
5

Distributions and ultradistributions on R+d through Laguerre expansionswith applications to pseudo-dierential operators with radial symbols

Jakšić, Smiljana

(Univerzitet u Novom Sadu, Prirodno-matematički fakultet, 2016)

TY  - THES
AU  - Jakšić, Smiljana
PY  - 2016
UR  - http://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija146796682108167.pdf?controlNumber=(BISIS)10
UR  - https://nardus.mpn.gov.rs/handle/123456789/7186
UR  - http://www.cris.uns.ac.rs/record.jsf?recordId=101443&source=NaRDuS&language=sr
UR  - http://www.cris.uns.ac.rs/DownloadFileServlet/IzvestajKomisije146796683260865.pdf?controlNumber=(BIS
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/39
AB  - Proučavamo razvoje elemenata iz S(ℝ+d) i S'(ℝ+d) preko Lagerove ortonormirane baze. Kao posledicu dobijamo Švarcovu teoremu o jezgru za preko Lagerove ortonormirane baze. Kao posledicu dobijamo Švarcovu teoremu o jezgru za S(ℝ+d) i S'(ℝ+d). Takođe, pokazujemo i Teoremu Vitnijevog tipa za S(ℝ+d) . Zatim, posmatramo prostore G-tipa i.e. prostore Gαα(ℝd), α ≥ 1 i njihove duale koji su analogni sa Geljfand-Šilovim prostorima i njihovim dualima. Zapravo, pokazujemo da postoji topološki izomorfizam između prostora G-tipa i potprostora Geljfand-Šilovih prostora Sα/2α/2(ℝd), α ≥ 1 koji sadrže "parne" funkcije. Dalje, dokazujemo da Furije Lagerovi koeficijenti elemenata iz prostora G-tipa i njihovih duala karakterišu ove prostore kroz eksponencijalni i sub-eksponencijalni rast tih koeficijenata. Opisujemo topološku strukturu ovih prostora i dajemo Švarcovu teoremu o jezgru. Takođe, dve strukturalne teoreme za duale prostora G-tipa su dobijene. Dalje, definišemo novu klasu Vejlovih pseudo-diferencijalnih operatora sa radijalnim simbolima koji se nalaze u prostorima G-tipa i njihovim dualima. Pokazana je neprekidnost ove klase Vejlovih pseudo-diferencijalnih operatora na prostorima Geljfand-Šilova i na njihovim dualima. Na ovaj način klasa Vejlovih pseudo-diferencijalnih operatora je proširena na radijalne simbole koji imaju eksponencijalni i sub-eksponencijalni rast.
AB  - We study the expansions of the elements in S(ℝ+d) and S'(ℝ+d) with respect to the Laguerre orthonormal basis. As a consequence, we obtain the Schwartz kernel theorem for S(ℝ+d) and S'(ℝ+d). Also we give the extension theorem of Whitney type for S(ℝ+d). Next, we consider the G-type spaces i.e. the spaces Gαα(ℝ+d), α≥1  and their dual spaces which can be described as analogous to the Gelfand-Shilov spaces and their dual spaces. Actually, we show the exist-ence of the topological isomorphism between the G-type spaces and the subspaces of the Gelfand-Shilov spaces Sα/2α/2(ℝd), α≥1 consisting of "even" functions. Next, we show that the Fourier Laguerre coecients of the elements in the G-type spaces and their dual spaces characterize these spaces through the exponential and sub-exponentia l growth of the coecients. We provide the full topological description and the kernel theorem is proved. Also two structural theorems for the dual spaces of G-type spaces are obtained. Furthemore, we dene the new class of the Weyl pseudo-dierential operators with radial symbols belonging to the G-type spaces and their dual spaces. The continuity properties of this class of pseudo-dierential operators over the Gelfand-Shilov type spaces and their duals are proved. In this way the class of the Weyl pseudo-dierential operators is extended to the one with the radial symbols with the exponential and sub-exponential growth rate.
PB  - Univerzitet u Novom Sadu, Prirodno-matematički fakultet
T1  - Distributions and ultradistributions on R+d through Laguerre expansionswith applications to pseudo-dierential operators with radial symbols
UR  - https://hdl.handle.net/21.15107/rcub_nardus_7186
UR  - t-6058
ER  - 
@phdthesis{
author = "Jakšić, Smiljana",
year = "2016",
abstract = "Proučavamo razvoje elemenata iz S(ℝ+d) i S'(ℝ+d) preko Lagerove ortonormirane baze. Kao posledicu dobijamo Švarcovu teoremu o jezgru za preko Lagerove ortonormirane baze. Kao posledicu dobijamo Švarcovu teoremu o jezgru za S(ℝ+d) i S'(ℝ+d). Takođe, pokazujemo i Teoremu Vitnijevog tipa za S(ℝ+d) . Zatim, posmatramo prostore G-tipa i.e. prostore Gαα(ℝd), α ≥ 1 i njihove duale koji su analogni sa Geljfand-Šilovim prostorima i njihovim dualima. Zapravo, pokazujemo da postoji topološki izomorfizam između prostora G-tipa i potprostora Geljfand-Šilovih prostora Sα/2α/2(ℝd), α ≥ 1 koji sadrže "parne" funkcije. Dalje, dokazujemo da Furije Lagerovi koeficijenti elemenata iz prostora G-tipa i njihovih duala karakterišu ove prostore kroz eksponencijalni i sub-eksponencijalni rast tih koeficijenata. Opisujemo topološku strukturu ovih prostora i dajemo Švarcovu teoremu o jezgru. Takođe, dve strukturalne teoreme za duale prostora G-tipa su dobijene. Dalje, definišemo novu klasu Vejlovih pseudo-diferencijalnih operatora sa radijalnim simbolima koji se nalaze u prostorima G-tipa i njihovim dualima. Pokazana je neprekidnost ove klase Vejlovih pseudo-diferencijalnih operatora na prostorima Geljfand-Šilova i na njihovim dualima. Na ovaj način klasa Vejlovih pseudo-diferencijalnih operatora je proširena na radijalne simbole koji imaju eksponencijalni i sub-eksponencijalni rast., We study the expansions of the elements in S(ℝ+d) and S'(ℝ+d) with respect to the Laguerre orthonormal basis. As a consequence, we obtain the Schwartz kernel theorem for S(ℝ+d) and S'(ℝ+d). Also we give the extension theorem of Whitney type for S(ℝ+d). Next, we consider the G-type spaces i.e. the spaces Gαα(ℝ+d), α≥1  and their dual spaces which can be described as analogous to the Gelfand-Shilov spaces and their dual spaces. Actually, we show the exist-ence of the topological isomorphism between the G-type spaces and the subspaces of the Gelfand-Shilov spaces Sα/2α/2(ℝd), α≥1 consisting of "even" functions. Next, we show that the Fourier Laguerre coecients of the elements in the G-type spaces and their dual spaces characterize these spaces through the exponential and sub-exponentia l growth of the coecients. We provide the full topological description and the kernel theorem is proved. Also two structural theorems for the dual spaces of G-type spaces are obtained. Furthemore, we dene the new class of the Weyl pseudo-dierential operators with radial symbols belonging to the G-type spaces and their dual spaces. The continuity properties of this class of pseudo-dierential operators over the Gelfand-Shilov type spaces and their duals are proved. In this way the class of the Weyl pseudo-dierential operators is extended to the one with the radial symbols with the exponential and sub-exponential growth rate.",
publisher = "Univerzitet u Novom Sadu, Prirodno-matematički fakultet",
title = "Distributions and ultradistributions on R+d through Laguerre expansionswith applications to pseudo-dierential operators with radial symbols",
url = "https://hdl.handle.net/21.15107/rcub_nardus_7186, t-6058"
}
Jakšić, S.. (2016). Distributions and ultradistributions on R+d through Laguerre expansionswith applications to pseudo-dierential operators with radial symbols. 
Univerzitet u Novom Sadu, Prirodno-matematički fakultet..
https://hdl.handle.net/21.15107/rcub_nardus_7186
Jakšić S. Distributions and ultradistributions on R+d through Laguerre expansionswith applications to pseudo-dierential operators with radial symbols. 2016;.
https://hdl.handle.net/21.15107/rcub_nardus_7186 .
Jakšić, Smiljana, "Distributions and ultradistributions on R+d through Laguerre expansionswith applications to pseudo-dierential operators with radial symbols" (2016),
https://hdl.handle.net/21.15107/rcub_nardus_7186 .

Extension theorem of whitney type for s (r + d ) by use of the kernel theorem

Jakšić, Smiljana; Prangoski, Bojan

(Srpska akademija nauka i umetnosti SANU - Matematički institut, Beograd, 2016)

TY  - JOUR
AU  - Jakšić, Smiljana
AU  - Prangoski, Bojan
PY  - 2016
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/779
AB  - We study the expansions of the elements in S(R-+(d)) and S'(R-+(d)) with respect to the Laguerre orthonormal basis, extending the result of M. Guillemot-Teissier in the one dimensional case. As a consequence, we obtain Kernel theorem for S(R-+(d)) and S'(R-+(d)) and an extension theorem of Whitney type for S(R-+(d)).
PB  - Srpska akademija nauka i umetnosti SANU - Matematički institut, Beograd
T2  - Publications de l Institut Mathematique-Beograd
T1  - Extension theorem of whitney type for s (r + d ) by use of the kernel theorem
EP  - 65
IS  - 113
SP  - 59
VL  - 99
DO  - 10.2298/PIM1613059J
UR  - conv_1261
ER  - 
@article{
author = "Jakšić, Smiljana and Prangoski, Bojan",
year = "2016",
abstract = "We study the expansions of the elements in S(R-+(d)) and S'(R-+(d)) with respect to the Laguerre orthonormal basis, extending the result of M. Guillemot-Teissier in the one dimensional case. As a consequence, we obtain Kernel theorem for S(R-+(d)) and S'(R-+(d)) and an extension theorem of Whitney type for S(R-+(d)).",
publisher = "Srpska akademija nauka i umetnosti SANU - Matematički institut, Beograd",
journal = "Publications de l Institut Mathematique-Beograd",
title = "Extension theorem of whitney type for s (r + d ) by use of the kernel theorem",
pages = "65-59",
number = "113",
volume = "99",
doi = "10.2298/PIM1613059J",
url = "conv_1261"
}
Jakšić, S.,& Prangoski, B.. (2016). Extension theorem of whitney type for s (r + d ) by use of the kernel theorem. in Publications de l Institut Mathematique-Beograd
Srpska akademija nauka i umetnosti SANU - Matematički institut, Beograd., 99(113), 59-65.
https://doi.org/10.2298/PIM1613059J
conv_1261
Jakšić S, Prangoski B. Extension theorem of whitney type for s (r + d ) by use of the kernel theorem. in Publications de l Institut Mathematique-Beograd. 2016;99(113):59-65.
doi:10.2298/PIM1613059J
conv_1261 .
Jakšić, Smiljana, Prangoski, Bojan, "Extension theorem of whitney type for s (r + d ) by use of the kernel theorem" in Publications de l Institut Mathematique-Beograd, 99, no. 113 (2016):59-65,
https://doi.org/10.2298/PIM1613059J .,
conv_1261 .
9
8
11