Show simple item record

dc.creatorRončević, Vukašin
dc.creatorŽivanović, Nikola
dc.creatorvan Boxel, John H.
dc.creatorIserloh, Thomas
dc.creatorStrbac, Snežana
dc.date.accessioned2024-12-20T14:20:45Z
dc.date.available2024-12-20T14:20:45Z
dc.date.issued2023
dc.identifier.issn2073-4441
dc.identifier.urihttps://omorika.sfb.bg.ac.rs/handle/123456789/1430
dc.description.abstractRainfall simulators represent often-used equipment for soil research. Depending on their performance, they could be appropriate for some soil research or not. The aim of this research is to provide insight into the capabilities of existing dripping rainfall simulators (DRS) to mimic natural rainfall and the frequency of simulated rainfalls of certain characteristics, facilitate the selection of rain simulators that would best meet the needs of soil research and to reach a step closer to the standardization of rainfall simulators. DRS performance was analyzed integrally, for simulators with more than one dripper (DRS gt 1) and with one dripper (DRS=1). A statistical analysis was performed for the performance of the DRS, wetted area, drop size, rainfall intensity, duration and kinetic energy. The analysis showed that DRS can provide rainfall that corresponds to natural rainfall, except in terms of the drop size distribution and wetted area. However, usually there are more factors that do not correspond to natural rainfall, such as the median drop size, volume and kinetic energy. Metal and plastic tubes (MT and PT) as the most present dripper types showed a strong relation between the outer diameter (OD) and drop size, while the inner diameter (ID) relation was moderate-to-weak. However, when increasing the range of MT drippers, for diameter size, the relation significance becomes very strong for bouts ID and OD. With the increase in the ID of PT, the relation deviates from the logarithmic curve that represents all drippers together. The sizes of the drops generated by the drippers are mostly in the range between 2 and 6 mm, while the number of drops smaller than 2 mm is relatively small. The intensity and duration of the simulated rain can be successfully produced to match natural values, with the most frequently simulated short-term rainfall of a high intensity. Most simulations were conducted at a fall height of up to 2 m, and then their number gradually decreases as the height gets closer to 5 m. Most simulations (58.6%) occur in the range between 20-90% KE, then 33.0% in a range of 90-100%, with only 8.4% lower than 20% KE.en
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200169/RS//
dc.rightsrestrictedAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceWater
dc.subjectsoil researchen
dc.subjectsimulator performanceen
dc.subjectrainfall simulator reviewen
dc.subjectdripping rainfall simulatorsen
dc.subjectdrippersen
dc.titleDripping Rainfall Simulators for Soil Research-Performance Reviewen
dc.typearticle
dc.rights.licenseBY
dc.citation.issue7
dc.citation.other15(7): -
dc.citation.volume15
dc.identifier.doi10.3390/w15071314
dc.identifier.rcubconv_1696
dc.identifier.scopus2-s2.0-85152860716
dc.identifier.wos000970241600001
dc.type.versionpublishedVersion


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record