Приказ основних података о документу

dc.creatorAndivia, Enrique
dc.creatorVillar-Salvador, Pedro
dc.creatorOliet, Juan A.
dc.creatorPuertolas, Jaime
dc.creatorDumroese, R. Kasten
dc.creatorMolina-Venegas, Rafael
dc.creatorArellano, Eduardo C.
dc.creatorLi, Guolei
dc.creatorOvalle, Juan F.
dc.creatorIvetić, Vladan
dc.date.accessioned2024-12-20T13:52:26Z
dc.date.available2024-12-20T13:52:26Z
dc.date.issued2021
dc.identifier.issn1051-0761
dc.identifier.urihttps://omorika.sfb.bg.ac.rs/handle/123456789/1179
dc.description.abstractSeedling planting plays a key role in active forest restoration and regeneration of managed stands. Plant attributes at outplanting can determine tree seedling survival and consequently early success of forest plantations. Although many studies show that large seedlings of the same age within a species have higher survival than small ones, others report the opposite. This may be due to differences in environmental conditions at the planting site and in the inherent functional characteristics of species. Here, we conducted a global-scale meta-analysis to evaluate the effect of seedling size on early outplanting survival. Our meta-analysis covered 86 tree species and 142 planting locations distributed worldwide. We also assessed whether planting site aridity and key plant functional traits related to abiotic and biotic stress resistance and growth capacity, namely specific leaf area and wood density, modulate this effect. Planting large seedlings within a species consistently increases survival in forest plantations worldwide. Species' functional traits modulate the magnitude of the positive seedling size-outplanting survival relationship, showing contrasting effects due to aridity and between angiosperms and gymnosperms. For angiosperms planted in arid/semiarid sites and gymnosperms in subhumid/humid sites the magnitude of the positive effect of seedling size on survival was maximized in species with low specific leaf area and high wood density, characteristics linked to high stress resistance and slow growth. By contrast, high specific leaf area and low wood density maximized the positive effect of seedling size on survival for angiosperms planted in subhumid/humid sites. Results have key implications for implementing forest plantations globally, especially for adjusting nursery cultivation to species' functional characteristics and planting site aridity. Nursery cultivation should promote large seedlings, especially for stress sensitive angiosperms planted in humid sites and for stress-resistant species planted in dry sites.en
dc.relationREMEDINAL-TE [S2018/EMT-4338]
dc.relationMICIN [PID2019-106806GB-I00]
dc.relationSRO [451-02-68/2020/14/2000169]
dc.relationCOST-action [CA19128PEN-CAFoRR]
dc.relationUniversidad Complutense de Madrid [CT39/17]
dc.relationRegional Government of Madrid, Spain, TALENTO fellowship [2018-T2/AMB-10332]
dc.relationANID PIA/BASAL [FB0002]
dc.relation[691149]
dc.rightsrestrictedAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceEcological Applications
dc.subjectwood densityen
dc.subjectspecific leaf areaen
dc.subjectseedling qualityen
dc.subjectreforestationen
dc.subjectoutplanting performanceen
dc.subjectforest restorationen
dc.subjectforest plantationsen
dc.subjectafforestationen
dc.titleClimate and species stress resistance modulate the higher survival of large seedlings in forest restorations worldwideen
dc.typearticle
dc.rights.licenseBY-NC-ND
dc.citation.issue6
dc.citation.other31(6): -
dc.citation.volume31
dc.identifier.doi10.1002/eap.2394
dc.identifier.pmid34164882
dc.identifier.rcubconv_1565
dc.identifier.scopus2-s2.0-85110579535
dc.identifier.wos000675383100001
dc.type.versionpublishedVersion


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу