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Chapter O

Introduction

The Schwartz space S(R?), beside playing an important role in different fields of
mathematics, was defined to extend the Fourier transform to the space of tempered
distributions. However, physical considerations related to unrenormalizable and
nonlocalizable field theories made it desirable to extend the Fourier transform
to a larger class of functionals than tempered distributions. The Gelfand-Shilov
spaces S,(RY), SP(R?) and SP(R?), o+ B > 1 arose (see [4], [12], [13], [15]-
(18], [26]). The spaces S%(R?), a > 1/2 are of the special interest, because as
the Schwartz space S(R?), they are invariant under the Fourier transform. The
Hermite functions, which are an orthonormal basis for L?(R?) and eigenfunctions
of the Fourier transform, have a special role for the characterization of not only
the Schwartz space S(R?) and its dual space but also the Gelfand-Shipov spaces
and their dual spaces i.e. all these spaces have been characterized in terms of the
coefficients of their Fourier-Hermite expansions (see [3], [27], [31]).

In Chapter 2 we will consider the space of rapidly decreasing functions on
(0,00) i.e. S(RZ) and its dual space S(RZ)’, that is, the space of tempered
distributions supported by [0,00)?. The problem of expanding the elements of
S'(Ry) with respect to the Laguerre orthonormal basis has been treated by M.
Guillemont-Teissier in [19] and A. Duran in [5] (see also [32], [43] and [44]). The
novelty of this thesis is the extension of the results of [19] for the d-dimensional
case. As a consequence of this result, we obtain the Schwartz kernel theorem
(Theorem 2.4.1) which states that there is one-to-one correspondence between
elements from S’(R""™) in two sets of variables  and y and the continuous linear
mappings of (S(R™)), into (S'(RT)),. Also, as a an outcome we get that S'(R%)
is a convolution algebra (see Remark 2.4.1).

The results concerning the extension of a smooth function out of some re-
gion and various reformulation of such problems are called extension theorems of
Whitney type. One can see Whitney [41], Seeley [36] and Hérmander [20, The-
orem 2.3.6, p. 48]. In Chapter 2.4 we solve a problem of an extension of a function
from S(R%) onto S(R?) (Theorem 2.4.2).

Let us considered the analogous transform to the Fourier transform for the
positive real line (0,00), that is, the Hankel-Clifford transform. In Section 3.2
we define this transform for the d-dimensional case. Next, we show that it is a
continuous mapping from S(R?) into the same space.

1



Thus, the following question arises: will there be analogous spaces associated
with the Hankel-Clifford transform in the same way as the Gelfand-Shilov spaces
are with the Fourier transform. In order to give an answer to this question, for
d =1, A. Duran introduced the G-type spaces i.e. Go(R%1), G*(R%) and G5 (R%),
a+ 3 > 2in [8]. In Chapter 3 we extend the definition of the G-type spaces for
the d-dimensional case. Moreover, we introduce, as an important novelty of this
thesis, the modified fractional power of the partial Hankel-Clifford transform. We
prove that this transformation is a topological isomorphism on G%(R%) (Theorem
3.2.2).

Next, the Laguerre functions, which are an orthonormal basis for L?(R%) and
eigenfunctions of the Hankel-Cliford transform have a similar role, as the Hermite
functions have for the Gelfand-Shilov spaces, in the characterization of the G-
type spaces. In Section 3.3 the characterization of elements from Gg(Ri), a>1
through the Fourier-Laguerre coefficients estimate is given. Although, the paper
[9] contains significant results on the characterization of the spaces GS(R,), a > 1,
we noticed subtle gaps which are improved in the d-dimensional case. The main
corrections are related to the analytic function F'(w), w € D (Proposition 3.3.3).

In Section 3.4 we describe the topological properties of Gg(Ri), a > 1. Since
the explanations for the one dimensional case given in [9] is inadequate. This is
essentially improved in the multi-dimensional case (Theorems 3.4.1 and Theorem
3.4.2) by De Wilde’s closed-graph theorem for ultrabornological spaces. Moreover,
in Section 3.5 as a main consequence of the analysed topological structure we prove
the Schwartz’s kernel theorem G%(R%), @ > 1 and their dual spaces.

In Section 3.6 we use the expansion of the Laguerre functions into finite sums
of the Hermite functions and vice versa in order to prove that there exists a topolo-
gical isomorphism between G2(R% ), o > 1 and the subspaces of the Gelfand-Shilov
spaces Sz//; (R%), o > 1 consisting of ”even” functions denoted as Sz//; oven (RY).

Furthermore, in Section 3.7 we give two structural theorems for (G2(R%)),
« > 1 (Theorem 3.7.1, Theorem 3.7.2). The first one states that f € (G%(R%)),
« > 1 if and only if it can be written as

x 1k
f= (T (errn-5+3)

keNg

where F' € L*(R%) and the coefficients ¢;, have a suitable growth. (zD? 4+ D —
r/4+1/2)F = H?Zl(ijjz- + D; —x;/4+1/2)% k € Nd. The second one is sim-
ilar to the first one, but instead of using the operator (zD? + D — x/4 + 1/2)F,
f € (G2(R%)) is represented as an infinite sum of integrals of L?(R%)-functions
integrated against the test functions that are differentiated and then multiplied
by powers of = suitable number of times.

In Section 4.4, we use the obtained series expansions for G%(R?), a > 1 and
their dual spaces in order to introduce a new class of pseudo-differential oper-
ators with radial symbols and prove continuity properties of such operators on
the Gelfand- Shilov spaces and their dual spaces. More precisely, we prove the
continuity of the Weyl pseudo-differential operators with radial symbols from the



spaces G32(R%) and (G32(R%1))’, @ > 1/2. In the first case, we show that the class
of the Weyl pseudo-differential operators with radial symbols is a continuous and
linear mapping from S¢(R?Y) into S%(R?) which can be extended to a continuous
and linear mapping from (S%(R%)) into SY(R?). In the second case, we show
that the class of the Weyl pseudo-differential operators with radial symbols is a
continuous and linear mapping from S%(R?) into S¢(R?) which can be extended
to a continuous and linear mapping from (S¢(R?)) into (S%(R¢))’. This second
case is especially important since the symbols are in the dual spaces and the cor-
responding mapping is over the dual spaces of the Gelfand-Shilov spaces. As a
remark (Remark 4.4.1), we have shown that this symbol class is in the bijection
with the space (Sz//; oven
Shilov spaces.

Finally, In Section 4.5, we give the corresponding results related to radial sym-
bols in S(R%) and its dual space and the corresponding continuous linear mappings
related to the Schwartz space S(R?) and its dual space. With these special cases,
we extend the corresponding results of M. W. Wong [42, Chapter 24].

(R9)), closely related to dual spaces of "even” Gelfand-






Chapter 1

Notation and background

1.1 Euclidean Spaces
Let R? be the usual Euclidean space given by
R% = {(1,...,74) : ;s are real numbers}.

Let 2 = (21, ...,2q) and y = (y1, ..., yq) be any two points in R%. The inner product
x -y of x and y is defined by

d
r-y= chjyj
j=1

and the norm |x| of z is defined by

2l = (Da2)".

J=1

"

The symbol R% stands for (0, 00)? i.e.

R? = {(21,...,24) : ;’s are real numbers greater than zero}

and @ for its closure i.e. [0,00)%. We denote the set of all real numbers by R,
the set of all positive integers by N, the set of all integers by Z, the set of all
non-negative integers > 0 by Ny and the set of all complex numbers by C.

1.2 The Multi-index Notation

We use the standard multi-index notation. We denote by 1 = (1,...,1) € N%
Thus, for z € C?, 2! stands for z;-...-24. A d-dimensional multi-index is a d-tuple
a = (ag,...,aq) of non-negative integers. We call |a| = Z;l:l a; the length of the
multi-index . For multi-index o € N¢ and # € R (or = € @), we denote the
power by

a _ o aqg
T =X ...l’d

5



and the partial derivative by

[65] g
o« O O
Ozt Oxy*

Furthermore, if 2,y € R% we also use
vy _om
a7 =2t e

In this case, if x; = 0 and ; = 0, we use the convention 0° = 1.

1.3 The Sequence spaces

A complex sequence {an}neNg is said to be rapidly decreasing if for every constant
7 > 0 the quantity
sup [au(In] + 1) (1)
nENg
is finit. The rapidly decreasing sequences form a vector space, which we de-
note by s and on which we put the topology defined by the seminorms (1.1) for
7 =0,1,2,.... It is easy to check that s is a Fréchet space. From now on, we
abbreviate a Fréchet space as an (F')-space.

Theorem 1.3.1. (/39, Theorem 51.5]) The Fréchet space s of rapidly decreasing
sequences s nuclear.

From now on, we abbreviate nuclear Fréchet space as an (FNV)-space. Clearly, in
the definition of s, we can take the [P-norms, p > 1 instead of the sup-norm. In
this case, a complex sequence {an}neNg is said to be rapidly decreasing if for every
constant 7 > 0 the quantity

( Z (lan|(|n] + 1)j)p>1/27

nENg

is finite.
A sequence {b,},cng is said to be slowly growing if there is a constant j > 0
such that
sup |b,|(Jn] + 1) < oo.

neNg

It can easily be verified that the mapping

{bu}news = ({andnews = D @nba)

neNg

is an isomorphism (for the vector space structures) of the space of slowly growing
sequences (which we shall denote by s') onto the dual of s. The space s’ is equipped
with the strong dual topology of s; s’ is a strong dual of a nuclear Fréchet space



(abbreviated as a (DFN)-space).
Let @« > 1 and a > 1. We define s* to be the space of all complex sequences
{an}neng for which

|n\1/°‘

H{an}neNd”saa = sup |a,|a < Q.

nGN

With this norm s** becomes a Banach space (abbreviated as a (B)-space). For
a > b > 1, s is continuously injected into s*’. As a locally convex space
(abbreviated as an l.c.s.) we define

s = lim s*°
—
a—17t

Note that s*, as an inductive limit of s*“, is indeed a (Hausdorff) l.c.s. since s*
is continuously injected into s.

Proposition 1.3.1. For a > b > 1, the canonical inclusion s** — s%° is nuclear.
In particular, s* is a nuclear (DFS)-space (i.e. a (DFN)-space) and its strong
dual (s*) is an (F'N)-space.

Proof. Since the canonical inclusion s*® — s*? is a composition of two inclusions
of the same type it is enough to prove that it is quasinuclear (for the definition of
a quasinuclear mapping see Definition A.1.2 and for the fact that the composition
of two quasinuclear mappings is nuclear see Theorem A.1.1. For each m € N4, we
define e, € (s“*) by

1/
(em, {an}neNg> = anb™"".
One easily verifies that

ml|l/e
lem oy < (b/a)/m".

> llemllseay < o0

mENg

Hence,

For {an},ena € s we have

1
H{an}neNgHsa’b < Z ‘am’b‘m‘ = Z ‘(ema{an}neNgH’
meNd meNd

i.e. the canonical inclusion s*® — s*® is quasinuclear. O

For the moment, denote by §% the space of all complex valued sequences
{bn}neng such that for each a > 1,

—|p|1/ e
H{bn}neNgHé‘o‘,a = Z by e o

nENg

With these seminorms §* becomes an (F')-space. Denote by = the mapping

§ = (s"), E{bn}n), {an}tn) Zann



One easily verifies that it is a well defined bijection. Let B C §* be bounded. If
B; C s® is bounded, there exists a > 1 such that B; C s** and it is bounded
there (s* is a (DF N)-space). Now one easily verifies that

sup (E{bntn), {antn)| < 00,

{bn}nEB, {an}nEBl

i.e. = maps bounded sets into bounded. Since §* and (s*)" are (F')-spaces, = is
continuous and now the open mapping theorem verifies that = is an isomorphism.
Hence, we proved the following result.

Proposition 1.3.2. The strong dual (s*)" of s* is an (F'N)-space of all complex
valued sequences {bn}neNg such that, for each a > 1,

||t/
H{on}nengllsmya = D [bala™™"" < 0.

nENg

Its topology is generated by the system of seminorms || - ||(sey q-

1.4 Laguerre functions and L*(R%, z7dx)

Let v € ]RTL We denote by L?(R%, z7dz) the space of all measurable functions on
R? for which

/ |f(z)]22x"dx < oo.
R4
+
Its norm is defined by the square root of the last quantity.

Let v > 0. The one-dimensional Laguerre polynomials of order ~ are defined
by

Ly(x) =

x e’ (i
dx

The corresponding Laguerre functions of order v are given by

n
' ) (e=27*™), x>0, neNp.
n!

n! 3 .
v — LY 2 > .
L) (x) <I‘(n+'y+1)> T(x)e 2, x>0, neNg

In the case v = 0, we write L,, and L, instead of L? and £2, respectively.
Now, we list properties we will need in the sequel:

(i) Let v € RTL The d-dimensional Laguerre functions of order 7 are products
of the one-dimensional Laguerre functions of order v; namely,

Ll(x) = L (1) ... L (x4), zeRY, neN

(i) {£7}nene is an orthonormal basis for L*(RY, 27dx).



(iii) The operator

d d r v y+1
=—|z—)—>——+— 1.2
T dx <xdx) 4 4x+ 2 (1.2)

is called the Laguerre operator. Notice that E is a self-adjoint operator, i.e.
(Ef,9) = (f, Eg) for f,g € dom(E) = {f € L*(RY); Ef € L*(R7)}.
Now we state an important property of this operator (see [11, (11), p. 188]):

E (x2L)(x)) = —nx2 L) (), z > 0. (1.3)

Hence, the Laguerre functions £, (x) are the eigenfunctions of the operator
E.
Next, we define the d-dimensional Laguerre operator

e R R e A

P J

Now, from (i) and (1.3) follows that z2£)(z) is an eigenfunction of the
Laguerre operator in each variable. Hence,

E,(¢2L)(x)) = —|n|z3 L)(z),  weRL.
In the case v = 0, we write E instead of E.. Notice that the d-dimensional
Laguerre functions £, (x) are the eigenfunctions of the operator E.
Remark 1.4.1. The d-dimensional Laguerre operator can be also defined by

d

. 2
=TT (o) - % ).

i=1
Then

v+l

Ev(x%E?l(x)) = —)n + x3 L) (x), zeRL

(iv) We have the following inequality for the Laguerre polynomials (see [11, (3),
p.205])

T

e 2|L,(z)| <1, x> 0. (1.5)

(v) We have the following estimate for the derivatives of the Laguerre polyno-
mials of order 7.

Theorem 1.4.1. ([6, Theorem 1])

dP
k> —x/2
(L)

. — k.0
< 2—mm{y,k}4k(n+1)(n+k)(n+max{’7n ) }+p)7

forall x>0, n,k,p € Ny.
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Note, for v = 0 in the previous theorem, we obtain

dk
k)/2 —x/2
el G 2L (@)
k5 p+k n+k
P4 1) - (n—i—[ 5 }+2) 0 ) (1.6)

Bounds in Theorem 1.4.1 can be improved for certain values of k. Indeed,
taking k = p/2, we obtain

Lemma 1.4.1. ([9, Lemma 2.1.]) If p,n € N, > 0 and v > 0 then

&
P L)

<Rp+DHn+1)-... (n+ [g} +3)(n+1)(n+7).

n

In the proof of the previous lemma the following estimate was shown

dxP

P
pPrR)/2 2 ( x/ZL%(x))‘

§2.4’f+2(n+1)....~(n+[p;k]+2)(n+k). (1.7)

n

In [19], p. 547 the following bound on the Laguerre functions is proved:

]g;k (%)pﬁn(x)‘ < Cyuln+ 1P, (1.8)

for all x > 0, n, k,p € Ny.
(vi) The Laguerre polynomials satisfy a simple integral equation with a symmet-
ric kernel (see [25, (4.20.3), p. 83]):
/ J,(Vat)x?2 L) (v)dr = 2(—1)"2"2 L) (x), v > 0, n € Ny, (1.9)
0
where J, is the Bessel function of the first kind.
(vii) We have the following recurrence formula (see [11, (24), p.190])
Ly (@) = L (w) — Ly _y(x). (1.10)

(viii) We can represent the Laguerre polynomials as finite sums (see [11, (41), p
192])

Lot (g 4 y) = ZL“ )P () (1.11)

and (see [11, (39), p. 192])

[e.e]

Ly(t) =Y (m) ™ a = B)mLn (D). (1.12)

n=0
(ix) The Laplace transform of t7L) () is given by (see [11, p. 191])

o r 1 —1)"
/ LY (t)e *tdt = (n +n';12£f ) ,7v>—1, Res >0. (1.13)
0 .
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1.5 Hermite functions and L?(R?)

We denote by L*(R¢) the space of all measurable functions on R¢ for which
|f(z)?dz < co.
Rd

Its norm is defined by the square root of the last quantity.
The one-dimensional Hermite polynomials are given by

22 d" 2

o (e™™), r € R, neNy.

The Hermite functions are given by

ho(z) = (2"n)/m) " V2e "2 H, (2), r €R, neNy.

Hy(z) = (=1)"e

Now, we list properties we will need in the sequel:

(i) The d-dimensional Hermite functions are product of the one-dimensional
Hermite functions; namely,

hn(ﬂl) = hnl (331) Ce hnd(wd)-
(i) {hn}nenge is an orthonormal basis for L*(RY).

(iii) The operator H = x? — (d*/dz?) is called the Hermite operator. The one-
dimensional Hermite functions are the eigenfunctions of this operator:

<x2 — d—2) hn = (2n 4+ 1)hy,.

dx?

In d dimensions, this equation together with (i) shows that h, is an eigen-
function of the Hermite operator in each variable,

(o2~ & Vi = (205 + 1),

)
dz;
as well as of the d-dimensional Hermite operator

d
2—D2h—|| 2—8—2h—2 h
(z Y = F 02 n = (2[n| + 1)hy,.
J

j=1

(iv) The Hermite polynomials can be expressed in terms of the Laguerre poly-
nomials (see [11, (2), p. 193])

_1
Hop(z) = (=1)"2°™m!L,,* (%), r€R, neEN; (1.14)
and
Hopy1(z) = (=1)™22" Pl L2, (2%), 2z €R, n€ N (1.15)

These expressions show that H,(x) is an even function or an odd function
of x according as n is even or odd.
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(v) H. Cramér has proved the following bound for the Hermite polynomials (see
11, (19), p. 208))

e 3| H,(2)] < k28 (n!)?,  z€R, neN, (1.16)

where the constant k is less than 1.0864435.

1.6 The Function Spaces S%(R?)

Problems of regularity of solutions to partial differential equations (PDEs) play a
central role in the modern theory of PDEs. When a solution of a certain PDE is
smooth but not analytic, we seek to find a space where we can describe its decay
for |#| — oo and regularity in RY. Gelfand and Shilov introduced the space of
type S in order to find solutions of certain parabolic initial-value problems.
We denote the set of all infinitely differential functions on R? by C*°(R?).
The Schwartz space S(R?) is the set of all C*® function  on R? such that

sup [z D"p(z)] < 00, n,m € N&.
TER?

Let o > 1/2. For A > 0, denote by Sfj,’ﬁ(Rd) a Banach space (abbreviated as
a (B)-space) of all ¢ € C*°(R?) with the norm

2™ D" (2) || L2 (gay
(AlnltImlplamla)

sup
n,mENg

The Gelfand-Shilov spaces S¢(R?) are inductive limits of the spaces Szﬁ(Rd) with
respect to A:
« . VA
Sa(®Y) = lim Sy (RY).
A—o0
The space S%(R?) is nontrivial if and only if & > 1/2. When the spaces are
nontrivial we have a dense and continuous inclusion:

S(R?) — S(RY).

The corresponding dual spaces of S¥(R?) are the spaces of ultradistributions
of Roumier type:
« . a,A
(Sa(RY)) = lim (S5a(R7))"
A—0

One easily verifies that for A; < Ay, the canonical inclusion

Sai (RY) = S22 (RY)
is a compact mapping, i.e. S(R?) is a strong dual of a Fréchet-Schwartz space
(abbreviated as a (DFS)-space). For the properties of S?(R?), we refer to [26,
Chapter 6]; see also [12], [18].

For each n € N&, h, € Sll//;(]Rd). Moreover, for a > 1/2, S¥(R?) is given
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through the Hermite expansions. Let ¢ : S¥(R?) — s2*, «(f) = {{/, ) bneng- 1t

is proved that ¢ is a well defined bijection between S¥(R?) and s** (see [3], [10]).
Moreover, we have the following results for which the proof is similar to the proof
of [24, Theorem 3.4 and Corollary 3.5] and we omit it.

Theorem 1.6.1. Let o > 1/2. The mapping

L= 82a7 L(f) = {<f> hn>}neNg

is a topological isomorphism between S(R?) and s*.

For each f € SX(RY), S _walf, hn)h, converges absolutely to [ in S (R?).

nENg

Theorem 1.6.2. Let a > 1/2. The mapping
L2 (SERY)) = (5*), UT) = {(T ) }reng

18 a topological isomorphism.
Moreover, for each T € (S2(RY)), Y

in (S2(RY))'.

(T, hy)h,, converges absolutely to T

neNg

1.7 The Function Spaces G’ (R, )

In this section, we state the results obtained by A. Duran in [8] and [9]. We
were motivated by these papers. Our goal was to extend the results for the d
dimensional case. Although, it may look trivial, it was booth technical and math-
ematical demanding. Also, we found subtle gaps in the proofs which we corrected.

The Hankel-Clifford transform g is defined by

HolPe) =5 [ Fal(Vatds

where Jy denotes the Bessel function of the first kind. The Hankel-Clifford trans-
form is analogous to the Fourier transform for the positive real line (0, 00) and is an
isomorphism from the Schwartz space defined on (0, c0) (denoted by S(R)) onto
itself (see [43]). In [8] A. Duran introduced the spaces of test functions G,(R),

GP(R,) and G?(R,) for a, 3 > 0 in order to define the Hankel-Clifford transform
on a larger class of functionals than tempered distributions with positive support.

Definition 1.7.1. ([8, Definition 2.1.]) Let o, 5 > 0 and A, B > 0. The spaces
Gaa(Ry), GPB(R,) and Gg:i(RQ are defined as the set of all complex valued
C*> functions f belongs S(R,) and satisfy:

V6 > 0Vp e N3ICs, > 0VEk € N: [[tPTR/2f®)(1)]]y < O, (A 4 6)F K2k

Vo> 0Vk € N3C,, > 0Vp e N: |[tPR2f0)(1)|, < C,p(B + o)Pp?/2P

Vo, 0> 03Cs5, >0Vk,pe N:
|’t(p+k)/2f(p) (t)]l2 < Cso(A+ 6 (B + Q)pk(a/2)kp(5/2)p,
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respectively.

The spaces G (R, ), G?(R,) and G#(R, ) are defined as the union of the spaces
Goa(Ry) when A > 0, G*B(R;) when B > 0 and GJ{(R;) when A, B > 0,
respectively.

Let f be from S(R;). The modified fractional power of the Hankel-Clifford
transform is defined as

T~ (F)()

/000(:1775,2)_7/2:E717 (2\/_56%> f(z)dz,

:1—z 11—z

where [, is the modified Bessel function of the first kind and z € C, |z| = 1,
z # 1. When 2z = —1 we obtain the Hankel-Clifford transform. The following
lemma is the key to prove that the Hankel-Clifford transform is an isomorphism
from the spaces Go (R4 ), G?(Ry) and G5 (R,) onto G*(Ry), Gs(R4)(R4) and G,
respectively.

Lemma 1.7.1. (/8, Lemma 3.2]) Let f be from S(Ry), v > —1, z € C, |z| =1,
z# 1 and p,k > 0. Then

[tP 02 fD (1), = |1 — 2| PR DR TB ) (1.17)

The following result about non triviality of the spaces G, (Ry), G?(R,) and
GP(R,) is obtained.

Corollary 1.7.1. (/8, Corollary 3.9.]) For every o, > 0, the spaces Go(R,),
GP(R,) are nontrivial. The space GP(R,) reduces to the null-function if and only

if

(i) B=0 and o <2

(i) o =0 and B < 2

(iti) « #0, 840 and a+ < 2.

The characterization of the spaces G%(R,) in terms of their Fourier-Laguerre
coefficients is given in [9].

Theorem 1.7.1. (/9, Theorem 3.6.]) Let f € L*(0,00), a > 1 and

0 — /0 O La(t)e 2t

The following conditions are equivalent

(i) There exist two constants ¢ > 0 and a > 1 such that

la,| < ca™™'", for n>0.

(i) The function f € G%(R;).
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Conversely, given a sequence (ay), satisfying the contdition (i) there exists f €

G2(Ry) such that a, = [;° f(t)L,(t)e""?dt for n € N.

Two integral transforms play a fundamental role in the proof of these results.
One of them is the above mentioned Hankel-Clifford transform and the other is
the Fourier-Laplace type operator Fp defined in the space G¢(R,) by

11

Folf)(w) = / T e S G for we D

where D is the unite disc. In [7], it was shown that Fp(f)(w) = (1—w)>_, a,w"
(see Proposition 3.2). In order to prove Theorem 1.7.1, firstly a characterization
of the analytic functions on the unite disc was given.

Lemma 1.7.2. (9, Lemma 3.2.]) Let F € H(D) and o > 0. If we put F(w) =
(1 —w)), a,w™, then the following conditions are equivalent:

(i) There exists constants C, A > 0 such that

|F® (w)| < CAPp*®,  for p>0 andw € D.

(i) There exist constants ¢ >0 i a > 1 such that

la,| < ca™™'", for n>0.

Secondly, the following corollary was proved.

Corollary 1.7.2. ([9, Corollary 3.5.]) Let f € G and o > 1. Then there ezists
constants C; A > 0 such that

(Fp(f)P(w)] < CAPP*®  for all p>0 and w € D.

We finish this section with generalization of the previous theorem for the dual
spaces (GE(R,)), > 1.

Corollary 1.7.3. (9, Corollary 3.8.]) We define the operator L., : (GS(Ry)) —
CY by L (u) = ((u, L))n. Then the mapping

Ly (Ga(R4)) = {(an)n : Va>1, ||[(an)nlla = sgp{|ana*””“|} < oo}

18 an isomorphism between these spaces.
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Chapter 2

The Function Space S (]Rﬁlr)

In this chapter we consider the space S(R%) which consists of all f € c> (R?)

such that all derivatives DPf, p € N& extend to continuous functions on R4 and

sup z*|DPf(z)| < oo, Vk,p € NI

d
zERY

With this system of seminorms S(R%) becomes an (F)-space. We denote by
S'(R%) its strong dual.
Firstly, we will show that the topology on S(R%) can be given by the L?-norms.
Secondly, we will show that the mapping ¢ : S(RL) — s, o(f) = {an(f) }nend:
where a,(f) = fRi f(z)L,(x)dz, is a topological isomorphisam between S(R%)

and s. In [5] and [19] was proved, for one dimensional case, that ¢ is a well defined
bijection.

Thirdly, we give a characterization of S'(R%) in terms of the Fourier-Laguerre
coefficients. As a consequence we obtain that S’ (Ri) is topologically isomorphic
to s’. Also we show that S'(R%) is a convolution algebra.

Finally, the Schwartz kernel theorems for both S(R%) and &’'(R%) will be given.
As a consequence, we will obtain the extension theorem of Whitney type for S(R%).

2.1 Another definition of the space S(R?)

Using the Sobolev embedding theorem (see Theorem C.0.1), we will prove that
the topology of S(R?) can be also defined by the L?-seminorms instead of the su-
premum seminorms. We need to verify that Ri satisfies the strong local Lipschitz
condition (see Definition C.0.1) in order to obtain the assertion. For the moment,
denote C = R%. On the hyperplane z1 + ... + x4 = 0 take d — 1 orthonormal
vectors &y, ..., &1 and let & = (=1/V/d, ..., —1/+/d) (given in the zy, ..., x4 co-
ordinate system). Then, &, ..., &, is an orthonormal basis for RY. Notice that the
boundary of C is exactly the graph, given in the (&i,...,&y)-coordinate system
of a continuous piecewise linear function f in &,...,&;_1 such that the domain
of each piece is a polyhedral cone. Thus, this function is Lipschitz continuous
on R?! and C is represented by the inequality &5 < f(&1,...,&-1). This proves
that C = R‘i satisfies the strong local Lipschitz condition. Thus, the Sobolev

17
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embedding theorem is applicable on R , i.e. for all j € Ny, the Sobolev space
Witio(R%) is continuously injected into C7(R4), where 2j, > d > 2(jo — 1) (here,

C’ (@) denotes a (B)-space of all functions which have bounded uniformly con-
tinuous derivatives up to order j; the norm is given by supjy<; SUD,cgd | D*o(z)]).

This implies that the topology on S (R‘i) can be given by the family of seminorms
1/2
P Z kaDpSOH%?(Ri) , J € No. (2.1)

kI<3, Ip|<j

2.2 Convergence of the Laguerre series in S (Ri)

Theorem 2.2.1. For f € S(R%) let a,(f fRd x)dx. Then

and the series converges absolutely in S(R%).
Moreover, the mapping

v S(RY) = s, o f) = {an(f)}ners
18 a topological isomorphism.
Proof. Let E be the Laguerre operator. By Remark 1.4.1, for f € S(R%)

d

0n(ES) = (Bf. L) = (£, E(L) = anl ) [[ - (i + 3)

=1

Moreover,

1
an(EPf) = a,(f 1)Pi(n; + )Pi, for any p € N%.

:j&

7,:1

As EPf € S(RY) C L*(R%), we have

d
1 2p;
Z lan(f)I? H <nz + 5) < oo, for all p € N,

neNd i=1

ie. {an(f)}neng € s. Clearly f =37, cya an(f)Ly as elements of L*(RY). By (1.8),
we find the bound on the d-dimensional Laguerre functions without complicated
calculation:

d
¥ DPL, ()] < Cppe [[(mi + 1P, 2 € RY, n,p, k € NG,

=1
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Hence, we obtain

> e D (an(£)La(@)] < Coi > lan(f H n; + 1Ptk < oo (2.2)

neNd neNd 1=1

which yields the absolute convergence of the series in S(R%).
To prove that ¢ is a topological isomorphism, firstly observe that by the above
computations it is well defined and it is clearly an injection. Let {an}neNg € s.

Define f = ZneNg anL, € L*(RY). Now (2.2) proves that this series converges

in S(R%), hence f € S(R%). Thus ¢ is bijective. Observe that, (2.2) proves that

.~! is continuous. Since S(R%) and s are (F)-spaces, the open mapping theorem

proves that ¢ is a topological isomorphism (see Apendix A.2). H

2.3 Convergence of the Laguerre series in S’ (Ri)

Theorem 2.3.1. For T € §'(R%) let b,(T) = (T, L,). Then

T=> b(T)L

nENg

and {bn(T)}pena € ' The series converges absolutely in S'(R%).
Conversely, if {bp}neng € 8 then there exists T € S'(R%) such that T =
ZneNg bnﬁn

As a consequence, S'(RY) is topologically isomorphic to s'.

Proof. Let {bn},ena € s'. There exists k € N such that ZneNg ba)?(In] + 1) <

co. For a bounded subset B of S(R%), Theorem 2.2.1 implies that there exists
C > 0 such that

Y lan(HPF(nl +1)* < C, Vf € B,

nGNg

where we denote {an(f)},eng = ¢(f). Observe that for arbitrary ¢ € N we have

Zsup|b£n,f)| < SUPZ Z'b‘cmam m>|

In|<q feB neNd meNG
= supZ|b llan(f)] < C,
feB neNg

i.e.

ZSUplen,f>|<OO

e TEB
0

Hence, ZneNg b, L, converges absolutely in S'(R%).

Let T € 8'(R%). Theorem 2.2.1 implies that ¢ : s — S'(R%) is an isomorphism
(s denotes the transpose of ¢). Now, one easily verifies that

(‘)T = {bn}neNga
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where b,(T) = (T, L,). Observe that for f € S(R%)

(T, f) = an(FUT L) = D anlf <Z bn( ﬁn,f>

neNg neNg neNg
ie. T=3, i bn(T)Ly. O

Remark 2.3.1. ([5, Remark 3.7 for d=1]) Let us show that §’'(R%) is a convolution
algebra. Given f,g € S'(R%), we compute the n-th Laguerre coefficient of f x g if
a, = (f,L,) and b, = (g, L,,) then

(F*9,La(1)) = (f(2) @ 9(y), Lulz +9)).

In order to simplify the proof, we consider the case d = 2. Using (1.10) and (1.11),
we obtain

;w

(f 9, La()) = (F ) ® gly), | [(Ln, (@i + i) = Lo+ 3i))

n;—1

= (f(2)® H (Z.cm (23) L (yi) Zﬁm 1) L, (%)))

=1 =0
= Z ‘Cnan )‘Ck( ) Z ‘Cnl 1,n2)— ( )‘Ck( )
k:<(n1 na) k<(n1—1,n2)
- Z ‘C’(nl,n2—1)—k(‘r)£k<y>+ Z £(n1 1,no—1)— ( )Ek( )>
k<(ni,n2—1) k<(ni1—1,no—1)
- Z a(nl,nz)—kbk - Z a(n1—1,n2)—kbk
k<(ni,n2) E<(n1—1,n2)
- Z a(nl,ng—l)—kbk + Z a(n1—1,n2—1)—kbk>
k<(ni,n2-1) k<(n1—1,n2-1)

where a,, or b, equals zero if some component of the subindex n is less than zero.
It is easy to verify that if (ay)nenz € 8" and (by)penz € 8’ then (f * g, L£,,(t)) € s'.

2.4 Kernel theorem for S(R'') and its dual space.
The Extension Theorem of Whitney type

In this section we will prove that spaces S(R%) and &’(R%) are nuclear. This fact,
together with Theorem 2.2.1 will lead us to the kernel theorem of Schwartz.
For the review of the toplogical tensor product we refer to Appendix A.5.

Proposition 2.4.1. The spaces S(R%) and S'(R%) are nuclear.

Proof. Since s is nuclear Theorem 2.2.1 implies that S(R%) is also nuclear. From
Proposition A.5.3 follows that S'(R%) is nuclear as the strong dual of a nuclear
(F)-space. O
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Theorem 2.4.1. The following canonical isomorphisms hold:
SRT)ES(R) = S(RTH)

and

S'(RT)&S (RY) = S'(RT™™) = L(S(RY), S'(RT)). (2.3)

Proof. The second isomorphism follows from the first since S(RZ) is a nuclear
(F)-space. Thus it is enough to prove the first isomorphism.

Step 1: From Theorem 2.2.1 follows that S(R"") ® S(R"}) is dense in S(R}*™).
It suffices to show that the latter induces on the former the topology m = € (the
7 and the € topologies are the same because S(R%) is nuclear). Since the bilinear
mapping (f,g) — f®g of S(RT) x S(R%) into S(RT™") is separately continuous
it follows that it is continuous (S(R7') and S(R"}) are (F')-spaces). The continuity
of this bilinear mapping proves that the inclusion S(R7) ®, S(R}) — S(R7™™") is
continuous, hence the topology  is stronger than the induced one from S(R7"*")
onto S(R7Y) ® S(RY).

Step 2: Let A" and B’ be equicontinuous subsets of S'(R}?) and S’'(R?), re-
spectively. There exist C' > 0 and j,l € N such that such that

sup [(T', )| < Cllellju and  sup [(F,¢)] < C[[¢]],
TeA’ FeB’

where
1 f1l;2 = sup sup [¢°DP f(x)] < oo. (2.4)

|k|<j zeR%
pl<t

For all T € A’ and F € B’ we have

Ty @ Fy, x(m,y))| = [(Fy, (Tw, x(z,9)))| < C sup sup |y*(T,, D'x(z,y))]
\lk\ég yeR?
P>

2 k' k' np
< C%sup sup sup [2"y" DY Dyx(z,y)|
|k|<j |K'|<j zeRY
lpI<l |p'|<l yeRY

< C¥lIx(@, W)l k. )> VX € S(RY) © S(RY).

It follows that the € topology on S(R}) ® S(R") is weaker than the induced one
from S(RT™). O

The isomorphism (2.3) calls for some comment. To every kernel K(z,y) €
S'(RT™™) we may associate a continuous linear mapping K of S(R") into S'(R7)
in the following manner: if v € S(R’) then

(Kv)(z) = | K(z,y)v(y)dy € S'(RT).

RY

Theorem 2.4.1 states that the correspondence K (x,y) <+ K is an isomorphism.
As a consequence of previous theorem we obtain the following important the-
orem.
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Theorem 2.4.2. The restriction mapping f +— fIRi’ S(RY) — S(RL) is a topo-
logical homomorphism onto.

The space S(RY) is topologically isomorphic to the quotient space S(R?)/N,
where N = {f € S(RY)|supp f C RAR%}. Consequently, S'(RL) can be identified
with the closed subspace of S'(R?) which consists of all tempered distributions with
support in RY.

In order to prove this result, we need the theorem on the tensor product of
linear mappings :

Theorem 2.4.3. (23, Theorem 7, p.189]) Let Ay, Ay be homomorphisms of Ey, Es
onto dense subspace of Fy and Fs, respectively. Then Ay @, Ay and A1®,As are
homomorphisms of By @ Es, E1&,E, onto dense subspace of Fy @ Fa, Fi®xF,
respectively.

If Ey, E5 are metrizable and A, and Ay homomorphisms onto Fy and Fy, re-
spectively, then A1®,A, is a homomorphism onto Fi &, Fy.

and the theorem about the duality of Fréchet-Schwartz spaces (abbreviated as an

(FS)-space):

Theorem 2.4.4. ([28, Theorem A.6.5, p.255]) Let E be an (FS)-space and F
be a closed subspace of E. Then E/F is a (FS)-space. Moreover, we have the
following isomorphism of linear topological spaces

(B/F) = F*,
where F+ = {2’ € E'; (2/,y) = 0 for anyy € F}.
Now, we proceed to the proof of Theorem 2.4.2.

Proof. Obviously, the restriction mapping f f\Ri , S(RY) — S(R?) is con-
tinuous. We prove its surjectivity by induction on d. For clarity, denote the
d-dimensional restriction by Ry;. For d = 1, the surjectivity of R; is proved in
[5, p. 168]. Assume that Ry is surjective. By the open mapping theorem, R,
and R; are topological homomorphisms onto since all the underlying spaces are
(F)-spaces. By the above theorem R;®,R; is continuous mapping from S(R4+1)
to S(RE) (S(RHRS(R) = S(R™!) by the Schwartz kernel theorem). Clearly
Ry@-R1 = Ryy1. As S(R¥1) and S(RE) are (F)-spaces Theorem 2.4.3 implies
that R4yq is also surjective.

The surjectivity of the restriction mapping together with the open mapping
theorem implies that it is homomorphism. Clearly N is closed subspace of S(R?)
and ker Ry = N. Thus R; induces natural topological isomorphism between
SR /N and S(R%). Hence (S(Rd)/N); is topologically isomorphic to &'(R%)
(the index b stands for the strong dual topology). Since S(R?) is an (FS)-space,
Theorem 2.4.4 implies that (S (RY) /N )Ib is topologically isomorphic to the closed
subspace

Nt ={T c SRY|(T, f) =0, Vf € N}

of §'(RY) which is exactly the subspace of all tempered distributions with support

in Ri. O
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Remark 2.4.1. The fact that (S(R1))’ is canonically isomorphic to the closed
subspace of (S(R?)) which consists of all tempered distributions with support in
R? allows us to define unambiguously the notion of derivatives of the elements of
(S(R)). In fact, for T € (S(R%))" and n € N&, D"T stands for the D"-derivative

of T in (S(R?))’ sense. Since supp D"T" C R4, D™T is a well defined element of
(S(R))'. Moreover, by S(R%) = S(R?)/N (see Theorem 2.4.2)

(DT, ) = (=1)"(T, D"¢), Vo € S(RY).

It is important to stress that if 7" is given by ¢ € S(R%) then D"T does not
have to coincide with the classical D™-derivative of ¢ (unless ¢ can be extended

to a smooth function on R? with support in R%). Considering ¢ as an element

of (§(R)) automatically means extending it by 0 on Rd\@. Of course, this
extension does not have to be smooth.
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Chapter 3

The Function Spaces GQ(R%),
a, 3 >0

In this chapter we consider the test spaces Gg(Ri), a,f > 0 ie. the G-type
spaces, for the spaces of ultradistributions supported by [0, 00)?.
Firstly, we will extend the Definition 1.7.1 for the d-dimensional case.
Secondly, we will define the fractional powers and the modified fractional
powers of the Hankel-Clifford transform, denoted by Z, ., and 7. ., respectively,
on S(R%). As a novelty of this thesis, we will introduce the modified fractional

power of the partial Hankel-Clifford transform jz(,il;), on S (Ri). We will prove that

7., J.~ and jz(,cf;), are topological isomorphisms on S(R%) and that they extend
to isometries from L*(R%,t7dt) onto itself. We will also see the action of these
transforms on the G-type spaces.

Thirdly, we will show that for @ > 1, ¢t : G2(R%) — s, o(f) = {(/, L) bnend
(the definition of s* is given in Section 1.3) is a well defined bijection. In this
way we will extend the results of A. Duran in [9] for the d-dimensional case and
we will do corrections of subtle gaps he made. Furthermore, we will prove that ¢
is a topological isomorphisam between G¢(R%) and s*. Also, we will provide the
similar results for the dual spaces (G%(R%))'.

Fourthly, we will study the relation between the G-type spaces and the Gelfand-
Shilov spaces. We will establish an existence of a topological isomorphism between
G%(R%) and Sz//; wwen (RY) consisting of all "even” functions from Sz//g wwen (RY),
where o > 1.

Finally, we give two structural theorems for (G%(R%))’, a > 1.

3.1 Definition of GJ(R?), o, 3 >0

We define the basic test spaces following Definition 1.7.1 for d = 1 and we consider
their topological structures.
Unless otherwise stated, o and 8 are two reals such that a, 5 > 0.
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Let A > 0. We denote by Gg:‘g(Rﬁlr) the space of all f € S(R%) for which

[# ™R Dr ()
sup 2~ 0
D kENd Alptk| (e/2)kp(8/2)p
) 0

With the following seminorms

Ht(pMWDpf(t)HL?(Ri)

, = su
UA,J(f) p,kegg A|p+k|k(a/2)kp(5/2)p

+ sup sup |tkDpf(t)], j € Ny,
p|<j teRY

|k <4
one easily verifies that it becomes an (F)-space. Clearly, if 4; < As, Gg:fﬁ (R?)
is continuously injected into Gfé’jﬁ (R%). We define GZ(R%) as an inductive limit
of the spaces Gg:ﬁ(Ri) with respect to A:
: A
Ga(RY) = lim GU(RY).
A—00
Since all the injections Gi:ﬁ — S(R%) are continuous, GZ(R%) is indeed a (Haus-
dorff) Le.s.. Clearly, GZ(R?) is continuously injected into S(R?). As inductive

limit of an (F)-spaces, G&(R%) is a barrelled and bornological L.c.s..
For A > 0 we define G, 4(R%) to be the space of all f € S(R%) such that

[t B2 DP ()]l
AR o/2)k

sup < oo, Vp € Ng

keNd
and similarly, G?*(R%) to be the space of all f € S(R?) such that

[t PTR2DP (1) d
S T ey Vk € Np.
0

If we equip Go 4(R%) with the system of seminorms

[t PR DP F ()| 2 et
+ k .
a + sup sup [t"DPf(t)], j € No,
Alkl o (e/2)k ,i\ég teR
xJ

0’y ;(f) = sup sup
’ Ip|<j keNd

one easily verifies that it becomes an (F')-space. Analogously, by equipping
GP4(R%) with the system of seminorms

[0/ ()] 12 g
AWl p(3/2)p

o'4,;(f) = sup sup
’ |k|<j peNd

+ sup sup [(*DPf(1)], j € No,

p|<j teRd
|k <j

it is also an (F)-space. We define G,(R%) and G(R%) as an inductive limit of
the spaces Gy 4(R%) and G**(R%), respectively, with respect to A:

Co(®Y) = lim Goa®RY)  and  GP(RY) = Ly GPARY).

A—o0 A—o0

Thus, G,(R%) and G#(R?) are barrelled and bornological l.c.s. that are continu-
ously injected into S(R%).
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Remark 3.1.1. We will give an alternative definition (again as an inductive limit)
of G%(R%) which will be needed for the proof of the second structural theorem
(see Subsection 3.7.2).

For A > 0, we denote by G A(Rd) the space of all f € S(RZ) such that

\|x(p+k)/2Dpf( )HL2 -

A2\p+k|]€ak ap

< Q.
p,kENg

By (2.1), the space Go74(R%) with the seminorms

1/2
|20/ D £ () /

||L2 d
~ (R m n
0-A7j (f) = Z A2|p+k|kak ap + Z ||x ‘D f(x) HiQ (Ri) ?

p,keNG Im|<j, In|<j

j € Ny, becomes an (F')-space. When A; < A,, égﬁ; (R?) is continuously injected
into ézﬁ;(R‘i) Clearly, @Z:ﬁ(Ri) is continuously injected into szﬁ(Ri) and
Gg:ﬁ(Ri) is continuously injected into éggﬁ(ﬂ%i) So, G2(RY) = lim G’gif‘(R‘i)
as a l.c.s. o

For each m € N{, f(t) — t™f(t) is a continuous mapping G4 (RL) — G, (R%),
GP(RY) — GP(RL) and GA(RL) — GA(RY).

We denote by (G (R2)), (Go(R1)) and (GZ(R%))’ the strong duals of G (R%),
Go(R%) and GP(RY), respectively.

One easily verifies that when a,8 > 1, Ln € GZ(RY) and hence G5 (R?) is

dense in S(R%). In particular, for & > 1, Go(RL), G*(R%) and G%(R%) are dense
in S(R%). Hence, (S(RL)) is contlnuously injected into (Go(R%)), (G*(R%))" and
(Ga(RY))"
Remark 3.1.2. Let a, 8 > 0. Then the spaces G2(R?) are non-trivial when o +
B > 2. We refer to Corollary 1.7.1 for d=1. For d-dimensional case it follows
considering the function ¢(t) = ¢1(t1) ... wa(tq), where ¢;, 7 =1,...,d, is a non-
zero element of G5(R ).

3.2 The Hankel-Clifford transform

Let Cpeo (@) be a (B)-space of all continuous functions

f: @ — C such that sup |f(z)| < oo,
meﬁ

the norm of f € CLoo( 4) is given by the left-hand side.
For v > 0, we denote by J, and I, the Bessel function of the first kind and the
modified Bessel function of the first kind, respectively. Denote

@D={zeCllzal=1,2#1VI=1,...,4d.
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For z € T@ and v € ]RT, we define the fractional powers and the modified
fractional powers of the Hankel-Clifford transform of f € S(R%) by

d .
.. ft) = (H(l—zl) Lot Z;h)
=1
2zt
x 1, (#;f’) dx

d d
Tenf(t) = (H(1 - Zl)_1> y f(z) H(mztzzz)_”mmf’lw (—21 iltzllzl) d
=1 + I=1

Since z € T@,

1 where 0, € (—m,7)\{0}, I =1,...,d.

2] =€
Observe that (1 + 2)/(1 — z) is purely imaginary. Moreover,

2\/1][1512[ . 1 l’ltl
(1 — Zl) N SIH(QZ/Z)

'YZ _ 9

and (xltlzl)*% (l‘ltl) 2.

Hence, for I =1,...,d,

(xltlzl)_w/QI»yl (Q—‘W) — e_iel’Yl/Q(xltl)—71/2€(i'yl7rsgn91)/2

1— 2
xJ., (%) . (3.1)

By the definition of the Bessel function of the first kind, it is clear that for v > 0,
§77|J,(€)| is uniformly bounded when £ € (0,¢) for arbitrary but fixed ¢ > 1.
Combining this with the asymptotic expansion of the Bessel function of the first

kind (see [1, 9.2.1, p. 364])

= V28 {cos(€ ~ gy — ) + >0l ™)), 2] - oo, Jars 2| < .

we obtain that there exists C' > 1 such that

d
2v/xt
H b)) < VT zzz)
=1

_Zl

< C, Vz,t € RYL. (3.2)

Moreover, for v > 0, by the definition of J,,, the function
6 = S_V‘]I/(g)7 R+ — C?

can be extended to a continuous function on R;. Hence, (3.1) and (3.2) imply
that for f € S(R?) the integrals in the definition for Z,,f and 7., f converge
absolutely i.e.

Tonfs Tonf € Croo(RY).
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When f; — f in S(R%),
Tonfi = Tonf and Jor fj = Torf in Cpoo (RY).

Hence, Z, , and 7. , are well defined continuous mappings from S(R%) to Cp (@)
Our goal is to prove that Z, , and J. , are continuous mappings from S (Ri) onto
S(R%). Firstly, we prove this for 7, in the case d = 1.

Lemma 3.2.1. Forz € TM and v > 0, T~ 1S a continuous mapping from S(R.)
onto S(R,).

Proof. Clearly S(R;) is continuously injected into L*(R.,t7dt). Let E, be the
Laguerre operator. Then

E,(6L](1) = —nt"2L](2),

see (1.3). For f € S(R,), we have

B, 4(1)) = 7 (( + DDF) + 1071 (1) — T+ T ).
Hence, for k € N,
BN f (1) = £ gu(t),
for some g € S(Ry). Let

an(f) = / " L.

Then, by integration by parts, we have
/ g (LY (B dt = / EL, (72 f() LY ()02 dt = —nan(f).
0 0

[terating this, we obtain
| s = ko).
0

Since g, € S(R.) C L*(R,t"dt), we conclude {a,(f)}nen, € 5. Observe that f =
>, an(f)L] in L*(Ry,t7dt). We need the following estimate for the derivatives
of the Laguerre polynomials (see Theorem 1.4.1):

- k0
|t DP (7217 (1)) < 27 ™mOR AR (4 1) - (n 4 k) (” +max{y — k,0} + p) |
n

for all t > 0, n, k,p € Ny. Denote by [y] the integral part of -y, we have

<n+max{”y—k,0}+p> < (n+[’y]—|—1+p

) < (n+ [ +p+HPFPEL
n n
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Hence, there exists C),; > 1 which depends on p and k, but not on n, such that
[tD7L3(1)] < Cpln -+ 1)FHPHIIHL, (3.3)

Since {a,(f)}n € s, we have

> " lan(f)] sup [£*DPL](1)] < oo,

teRy

i.e. Y an(f)L) converges absolutely in S(R,). Since J,,f : S(Ry) — Cr~(Ry)
is continuous,

\7z,vf = Z an(f)jznﬁg

and the series converges absolutely in Cr~ (R, ). Using (3.1) and (1.9), we obtain

_iv0  iymsgn 6

TALh(t)=2(=1)"e 2e 2 (1—e”)"sin(0/2)| L) (t/sin?(0/2)) . (3.4)

The estimate (3.3) together with (3.4) implies that ) a,(f)J.,L] converges
absolutely in S(Ry). Thus, we obtain that the image of S(Ry) under 7, is
contained in S(Ry). Since J,, : S(Ry) — Cr~(Ry) is continuous its graph is
closed in S(R,) x Cr~(Ry). As S(R,) is continuously injected into Cre (R, ) and
T.~ (S(Ry)) € S(R,), the graph of 7. ., is closed in S(R;) x S(Ry). Since S(R.)
is an (F')-space, the closed graph theorem implies that 7., : S(Ry) — S(Ry) is
continuous (see Appendix A.3). O

Now, by the principle of induction, we show that for z € T and v € @,
. is a continuous mapping from S(R%) into itself. When f € S(R%), we denote

Tz by jz(i) in order to avoid confusions. We already considered the case d = 1;
2(,17) :S(Ry) — S(Ry) is continuous. Let jz(f? be continuous. Let

v=(v,7) € Rﬂlfl where v € @ and v >0

and let
¢ =(z2) € TUY where z € TW and 2’ € TW,

The mapping
JD o0, SRL) ©, S(Ry) - S(RL) @, S(R.)

is continuous. Denoting by jc,y its continuous extension on the completions,
the Schwartz kernel theorem i.e. Theorem 2.4.1 for S(R%) yields that jC,V is a
continuous mapping from S(R%*!) into itself. Observe that for each f € S(RY) ®
S(Ry),

TVt = Teo f(2), ¥t € R

Thus jg(frl)f € S(REM). If f € S(REM), there exists a sequence

fieSRY@SMR,), jEN, such that f; — f in S(RH)
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(cf. Theorem 2.4.1; S(RE) is an (F)-space). Since we proved that deJrl) :

S(RE™) — Cre(R%H) is continuous (see the discussion before Lemma 3.2.1), wi
have, for each fixed t € RE™,

TEM @) = tim TS0 = T T fi(0) = Teuf (0.

‘]ﬁOO

Hence,
‘7(’111}-&-1)]0 e S(Rf—l) and d+1)f %Vf Vfe S(Rd-H)

We conclude that deH : S(RY) — S(REM) is continuous.
Next we prove that J, . extends to isometry from L*(R%,t7dt) onto itself.
Firstly, we prove the following claim:
For v € R, let vidcs (R%) be the space which consists of all finite linear
combinations of the form
Z akﬁz, a, € C.

k<n

Then, for each v € RY, VA% is dense in S(R%).

The proof follows by the principle of induction on the dimension. For d = 1, it
is already proved in the first part of the proof of Lemma 3.2.1. Assume that the
assertion holds for d € N. Let v = (7,7/) € R4, where v € R and 4/ > 0. The
inductive hypothesis implies that

Vw(d) ® VW(,I) is dense in S(RY) ®, S(R,)

and consequently in S(RT™) by the Schwartz kernel theorem for S (R%), i.e. The-

orem 2.4.1. One easily verifies that Wd) ®V7(,1) - AR

By (3.1) and (1.9), we obtain

TAL(t) = e, <H | sin(6,/2)|~ )

= <sm2§;1/2)””’ sin2§gd/2)> ’ (3.5)

im0 iymsgn 6 . -
Czﬁ:He e 2 (1_6“91) !
=1

One easily verifies that the set {J.,L}|n € Ni} is orthonormal in L?(R%, ¢7dt).
Now, we have

and the proof is completed.

where

szﬁfHLQ(Ri,ﬂdt) = ||f||L2(Ri,ﬂdt) for f € ‘/'y(d)

(Vw(d) is a subspace of S(R?) defined in the assertion above). Since Vy(d) is dense
in S(R%), we have

||jzﬁf”L2(Ri7t7dt) = Hf”L%Ri,t“fdt) for all f € S(Ri)- (3.6)
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Thus J. ~ extends to an isometry from LZ(Ri, t7dt) into itself. Secondly, we prove
the surjectivity of 7, .. It follows from (1.9) and (3.5) that

Ten T/ L) = L) and T, , Tz, L) = L], where 2 = (£, ..., Zq).

Hence, J.. : L*(R%,t7dt) — L*(R%,t7dt) is bijective with an inverse J;,. In-
cidentally, we can also conclude that J., : S(R%) — S(R%) is a topological
isomorphism (has an inverse J ).

Let z € T@ and

11
o 2T
=1
Since (1+ z)/(1 — z) is purely imaginary, for all { = 1,...,d, |®.(¢)| = 1 and one
easily verifies that the mapping f — @, f, is a topological isomorphism on & (Ri)
and an isometry from L*(R%,¢7dt) onto itself. Since

Iz,'yf = ¢zs72',7(q)zf)7

we can conclude that Z, , is a topological isomorphism on S(R?) and isometry
from L2(]Ri, t7dt) onto itself; clearly, its inverse is Z; ,. In the sequel, we will need
this technical lemma.

Lemma 3.2.2. (/8, Lemma 5.2] for d = 1) Let f € S(RY), v € R d, 2 € CY
2| =1, 2# 1 and n € N¢.

(i) If 0 < k <n then

:g

jz fy—&-nf

L) Tt @)

=1

(1) Tonf(t) = H7=1<Zl — 1)"D"T, i f (1)
(iii)

||t (p+k+7) /2Dpf (H |1 2 |—pz+kz> Ht(p+k+7)/2ijmf(t)‘ . (3.7)
for p, k € Nd.
Proof. We follow the proof of (1.17).
(1) Since
Y ]. y+m
(L) = ot L (V)

(see [25, p.103]), we obtain

Tt = (11 (:25)" )

=1
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d
X f(l’) H(l-ltlzl)*(’YHrm)/?x?Hrnz [’Yz+nz (

d
L 1=1

2wxltm) du
1— Z]

d

- ([T(2) )t

=1

(#1) Since, f = T} Tonf(t) = To1 4 (T2 f(t)), We obtain
an(t) = Dnjzflﬂ/(\yz,'yf(t))'

Hence, from (i) follows

( 1 )nl>‘72’17'y+n(u7z,yf(t)).

Zl—l

=

D) = (

=1

Hence, the assertion follows.
ii1) Consider F' € S(R%) such that D¥F = f and put g = J.,F € S(R%).
+ Y +
Then from (i) and (ii) follows
an — Dn+kF _ Dn+kjflg —_ Dn+ka_1"yg

Z7’Y

d 1 n+k;
(H (Z — 1) )jﬂﬂ*”*k’g
=1

and

Now, from (3.6), we obtain

d
Ht(p+k+v)/2Dpf(t)H2 _ <H 11— zl|—pz—kz "t(p+k+7)/2jflﬂ+n+kg(t)H2
I=1

d
= (H |1 _ Zl|—Pz—kz> Ht(P-i-k'i"Y)/Qg(t)HQ
=1
d
_ <H 11— Zl’pl+kl>
=1

Ht(”kﬂ)/szjzﬁf(t) H2 _

O

Next, we summarise the properties of 7. , and Z, , in the following proposition:
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Proposition 3.2.1. For v € R% and z € T the fractional powers and the
modified fractional powers of the Hankel-Clifford transform I, and J.. are to-
pological isomorphisms on S(R%) and they extend to isometries from L*(R%L, t7dt)
onto itself with inverses, I . and J. respectively. Moreover, for all p,k € Ng

and f € S(RL), (3.7) is valid.

Notice that when z = —1 € T@ then H, = J,, = Z,, where H, is the
d-dimensional Hankel-Clifford transform, defined by

d
H(f)(t) = 94t/ » f(x)ﬂﬂ/2 H JW(M)CZ:L‘, te R‘i.
4 =1

By (3.5), L], n € Ng, are eigenfunctions for H.,; more precisely
H L) = (-1
Since T is an isomorphism on S(R%), by (3.7) we have the following result.

Theorem 3.2.1. The modified fractional powers of the Hankel-Clifford transform
J.0 are isomorphisms of Go(R%), G*(RY) and GE(RL) onto G*(RL), Gz(R?)
and G§(RY) respectively.

Let
e d' d" €N,

e v=(v,7") € @ X R_i" = ]RTZlr (for brevity d = d' 4+ d”) and

o 2 =(z1,...,2¢) € T,
Denote by jjlﬁ, the modified fractional power of the Hankel-Clifford transform on
R? and by 1d" the identity operator S (RY) — S(RY"). Now, since:

Theorem 3.2.2. (23, Theorem 5, p. 277]) Let E, Eq, Fy, F» be locally convex,
Ay € L(E,F),Ay € L(Ey, Fy). If Ay, Ay are injections, then Ay ®. Ay is an
injection. If Ey, Eo, Fy, Fy are complete, then also A;®.Ay is an injection.

Note, L(E, F) is the vector space of all continuous linear mappings of E into
F.

It follows that Jj:v,éélddu is an injection on S(R%). From

Theorem 3.2.3. (/23, Theorem 7, p. 189]) If Ey, Es are metrizable and Ay, As
homomorphisms onto Fy and Fy, respectively, then A1®,As is a homomorphism
onto F1 &, F.

follows that inv,@)ldd” is a homomorphism on S(R%). Now, since S(R%) is nuclear
(see Theorem 2.4.1), Proposition 3.2.1 imply that jj:y@Iddﬁ is a topological iso-
morphism on S(R%). We denote by = € R% z = (2/,2”), where 2/ = (z1,...,24)
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and " = (Tg41,...,2q4). Let f € S(RE). Define the modified fractional power of
the partial Hankel-Clifford transform

& &

y 2/ x;t

«Z(/?V)/f(t) = (H(l _Zl)_l) f@',t") H zity2) M 2a) L (#) de’.
=1 RY =1

By the same technique already described for the absolute convergence of 7. ,, one
proves that jz(,il;),f € Cr~(R%). When f; — f in S(R%),
T g = T fin Cpe (RD).
Since,
T f(t) = T4 &1 f(t) for f € S(RY) @ SR,

we accomplish the same for all f € S (Ri). Hence, the first part of the next
proposition follows.

Proposﬂzlon 3 2.2. The modified fractional power of the partial Hankel-Clifford
transform jz -

Moreover, jz(, ., extends to an isometry from L*(RL,t7dt) onto itself with an

inverse j;,d;),. For all (p/,p"), (K, k") € N& x N&" = N4 and all f € S(R?)

, is a topological isomorphism on S(R%).

Ht/ Pk ) 24P +E) /2Dpf

<H|1 - Wz)

Proof. The proof that JZ(,‘?;), extends to an isometry from L?(R%,7dt) onto itself

with an inverse J. ;,d;), is the same as for 7, , given above. As in the proof of (3.7),
one obtains for f € S(R%)

O,

t/ (p'+K'++' )/Qt//(p//"’ku /2Dk Di’// j(/df/y)/f(t> H :
) 2

/@R ) 2 R /2 D £ () H
2

(HH_Z, )

Dy g f = gSDuf, for f € S(RY) @ S(RY).
Hence, the same holds for [ € S(R%) and the equality follows from (3.8). O
HA ={N,.... A} C{L,....d} and A" = {\[,..., N} ={1,...,d}\A’ one

can also consider the modified fractional power of the partial Hankel-Clifford trans-

form with respect to xxr = (2, ..., zy,) defined by (here zpn = (zxy, ..., 21,

1P/ K47 2400 +E") /ZDf/lj(d (2 )H : (3:8)
2

Clearly,

and abusing the notation we write x = (2, 2zn))

/ /2 I
j(AvA,f( ) = ( 1— 2) > / [z, tA" (IAQWZZ) ! x;l
=1
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2 x,\/tle
x1 ——L ) dxy.
%‘f ( 1-— 2l oA

Corollary 3.2.1. Using the same notations as above, .72(,/7\;1)\, 15 a topological iso-

morphism on S(R%) and it extends to an isometry from L*(R%,¢7dt) onto itself
with an inverse j;,A;/)V. For all f € S(RY) and all (par, par), (knr, kar) € NG

|

Al A//

t(pA/+kA/+"/A/)/Qt(pA//+kA//)/2fo(t> H2

ks o 7 (A) f(t>H2, (3.9)

tps tarr Y2 ypr

d
Py R Fhpr+var) /2, (Ppr k) /2
— <H|1 _zl| )\; Ai) Htgg/\l A ’YA/)/ t%ﬁ\u A”)/ D
=1

Proof. Let
0 :R*— R?

be the orthogonal transformation given by

O(z) =y, where YNg =Ty YN, = T and YN = Zdrgy -5 YN, = T

Observe that © maps ]Rﬂlr and @ bijectively onto themselves. Let © be the
mapping
frfo®, L*(RY) — L*(RY).

One easily verifies that for each u € @ it is an isometry from L?(R%,¢"dt) onto
L*(R%,¢9'#dt) and a topological isomorphism on S(R?). Its inverse is

O lf=foO7

Let v/ = (.- ,%/d/) € @. The corollary follows from Proposition 3.2.2 and
the fact that

g =676

Remark 3.2.1. Observe that

o if A’ = () then ‘72(,1:/)\/ = Id and
o if A= {1,...,d}, T is just T....

Let 2/ = —1 € TW) in j;,/};il we obtain the partial Hankel-Clifford transform
with respect to xpr = (2, . .. 7gv,\;l,) denoted by Hgﬁ:)

As a direct consequence of Corollary 3.2.1 we have the following result.

Corollary 3.2.2. .72(,/7\0/) 1 a topological isomorphism on Gg(Ri) with an inverse

\72&/1\(;)' In particular, ’H(()A/) 15 a self-inverse topological isomorphism on Gg(Ri).
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3.3 Fourier-Laguerre coefficients in G¢(RY), a > 1

In this section, we characterise the space GZ(R%), a > 1 in terms of the Fourier-
Laguerre coefficients.

Proposition 3.3.1. (/9, Lemma 3.1/, for d=1) Let a,, = fRd t)dt, n € Nd
and f € L*(RY). If there exist constants ¢ > 0 and a > 1 such that

la,| < ca ™ n e N&, (3.10)
then f € G2(RY), a > 1.

Proof. As {ap}nene € s* C s, it follows f € S(R%) and the series Y. a,L,

converges absolutely in S(R%) to f. Since ni/* + ... + n/* < d|n|*/*, denoting

a = a'? > 1, we have

Using the estimates (1.6) and (1.7) for p € N¢, we have

2L, (1), < 2p|+5dﬁ(nl+1) (u+B]+2), 6w
[ Dre, )|, < 25dﬁ(nl—|—1) <nl+[gl}+2>. (3.12)

Let A={\,...; ¢} C{1,...,d}. Since
ML, = (~1)™ L,

(3.11) implies

oD S@], < 3 lonl l22a0),

neNd

< colel+sd Z Ha’”ll/a (nz n [2] n 2)

nENdl 1

d
02|P|+5dHa [p1/2]+2) Z H —(nu+lp/2]4+2)1* (nl + [%] + 2) WQHQ.
=1 N =1

IN

Let u > 0, v > 1. Clearly, p,.(z) = p~(@twt/e (x +u)*, x € (—u, +00) attains its
maximum at x = (au/Inv)® — u. This implies that there exist Cy, A; > 0 such
that

tp/QH((]A)f(t)HQ < CLAPI/2P forall pe N& A C{1,...,d}.  (3.13)
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Similarly, by using (3.12), there exist C5, Ay > 0 such that

(/2 pry ) f(t)H2 < CoAP PP forall pe NE A C{1,....d}. (3.14)
Since H(()A) [ € S(R%), by integration by parts one easily verifies that

(2 Do) (1), 4092 DY £ (1)) 2o
= D@D £6), M F(0)) e |

Hence, for all k, p € N& such that 2k > p, by (3.13) and (3.14), we obtain

¢

(p+k)/2DpH(()A)f(t) H2

< g;(p)(lﬁiﬁl—]@ﬁkmD%ﬂnf@ﬂ> Vi)

p+k—m)!

< olbl+IK Z ( ) ’( +(2p—m)/2 py2p— me(A f(t), t2k—m)/2/H(()A)f(t))‘

m<p

< C/A’|p+|k|Z( ) (a/2)m (a/2)m(2p m)(a/Q)(Qp m)(gk m)(a/Q)(% m)

m<p

< C’A’lpHIleIpl(Qp)ap@k)ak’

i.e. there exist C3, A3 > 0 such that for all k,p € N¢ such that 2k > p and all
ACA{l,...,d}

Let now p, k € N& be arbitrary but fixed. Let

D ()] < Cadly s pior, (3.15)
2

A’:{)\’l,...,/\fi,}g{l,...,d}besuchthatb;<%, I=1,... .d

and

p”' =1,....d"

N ={X], .., A} ={1,...,d}\A" be such that kyy >

Then (3.9) and (3.15) imply

k / 17 Al
e p s, < 24 e ooy i
S 03(2143)‘p+k|p(a/2)pk(a/2)k"
ie. fe€ Gg(Ri)' ]

Our next goal is to prove that f € G%(RZ) implies (3.10). We need some

preparations.
Let IT = II; x ... x II;, where

HlI{ZIEC’Ile<O}, [=1,..,d.

One easily verifies that for each z = x + iy € II, the functions
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ot e 2 RYT — C,
o t s Dy e M@t = _omitje= i@t} RY — C for I =1,...,d and
o t — D, e 2@t — oppe=2milzti)t R — Cfor i =1,...,d

are in G2(R%) (also in S(R%)). For the moment, denote by ¢, [ = 1,...,d, the
point in R? such that all coordinates are 0 except the [-th coordinate which is equal
to 1. By standard arguments, one proves that for the fixed z(©) = (:r;go), cee x((io)) €

R? and y© = (ygo), . ,y((io)) € R? with yl(o) <0,l=1,...,d (ie 2© =20 ¢
iy®) € II) we have

— — —2mite ,

<6727ri(x(0)+xlel+iy(0))t . €f2ﬂi(:r(0)+iy(0))t) 1 —2mi(z(® iy ()¢
i

as z; — 0 in Gzzﬁ(Ri) for some A > 0 and consequently in G%(R%) and S(R%).
Also,

—2mi((©) i (y© —omi(z© iy 1 —ori(z(® 1iy©
(6 27 (29 +i(y +ylel))t_€ 2mi (9 +iy )t)_ - 2mte 2mi (29 +iy )t’
Yi

as y; — 0 in Gg:ﬁ(Ri) for some A > 0 and consequently in G2(R%) and S(R%).
Moreover,

—2mitye 2Ty 9 e 2mie+iy )
and
27Tt16727ri(m+iy)t N 27Tt1672m(93(0)+iy(0))t
as (z,y) = (#,5©) in Gg:ﬁ(Ri) for some A > 0. Hence, the same holds in
G%(R%) and S(R%). It follows that for each u € (G2(RZ)) or u € (S(RZ)), the

function
2+ Fru(z) = (u(t), e ™), I — C,

is of the class C!;
Dy Frru(a + iy) = (u(t), Dg,e” > H0Y)

and -
Dy, Fryu(x +iy) = (u(t), Dye >ty

Since the Cauchy-Riemann equations hold for Fru, it is analytic on II.
Let D = D x ... X Dy, where

Dl:{wl €C| \wl| < 1}, l=1,..,d.

Observe that the mapping
1 —+ w1 1 + Wy )

w— Qw) = (47rz'(1 —wy) T Ami(1 — wy)

is a biholomorphic mapping from D onto IT with an inverse
e O (2) = (472’21 —1 ATizg — 1) |

Amizy + 177 T dmizg+ 1
Thus, we have the following result.
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Lemma 3.3.1. For each u € (G(RL)) or u € (S(RL)), the function

.gww:ﬂmmwﬁ«wmﬂfﬁmﬁ,Dﬁo

is analytic on D, i.e. Fpu € O(D).

Proposition 3.3.2. (7, Proposition 1.1], for d=1) Let u € (S(R%)) and a, =
(u, L), n € Nd. Then,

d
Fo(u)(w) =1 —w;) > auw", weD. (3.16)
Jj=1 nENg

In particular, if Fpu = 0 then u = 0.

Proof. By Theorem 2.3.1, u = ZneNg a, L, and the series converges absolutely in
(S(RL)). As e ?™# ¢ S(R%), z € II, we obtain

Fu(u)(z) =) an/ L,(t)e 2™ dt, =z € TI.

Using (1.13), we obtain

4 (L miz; — 1)
Ful)(z) = Yo [ &T2E 0" o

1 . +1 Y
. s+ 2wz )"
nGNg j=1 (2 J)

By the definition of Fpu, (3.16) follows. O

The next two assertions are already proved in [9], Lemma 3.2 and Corollary
3.5, in the case d=1. However, there are subtle gaps which we improve upon.

Proposition 3.3.3. Let a > 1 and {an}neNg be a sequence of complex numbers
such that a,, — 0 as |n| — co. Then

belongs to O(D). The following conditions are equivalent:

(1) There exist constants C, A > 0 such that

|DPF(w)| < CAPlpe? pe N weD. (3.17)

(ii) There exist constants ¢ > 0, a > 1 such that |a,] < ca™""", n e Nd.



41

Proof. Clearly F' € O(D). Let ZneNg b,w" be the power series expansion of F' at
0. Then, for n € N¢ we have

D"F(0 1 n m! e
= n!()zaz(k)“”k(Z (s )

k<n m>n—k w=0
k<1
= > (-1)Mq,_y. (3.18)
k<n
k<1

Thus, for n,m € N¢,

Z bnt14p = Z Z(_l)‘k‘anﬂwlfk- (3.19)

p<m p<m k<1
Firstly, assume that d > 2. Denote by @),,,, the d-dimensional parallelepiped
Qum={r R <y <m+m+1,1=1,....d}.
If ¢ € N¢ is such that:

e n + ¢ is in the interior of @), ,
Then a,,, appears exactly 2 times in the sum on the right hand side of
(3.19) such that 297! times with the "+ sign and 297! times with ”—" sign.

e n + ¢ is on the s-dimensional face of Q@ m, 1 <5 <d—1
Then a,4, appears exactly 2° times half of which are with the "+ sign and
the other half with the ”—" sign.

Thus on the right hand side of (3.19) everything cancels except for those terms
which indexes are the vertices of @,,,, and they appear only once. For k € Ng
with k& < 1 denote by m® the multi-index that satisfies

) _ 0, k=0
Lo ml—l—l, k’lzl

I =1,...,d; when k varies through the multi-indexes that are < 1, n + m +
1 — m® varies through the vertices of Qn,m- Using this notations, by the above
observations, we have

Z bn+1+’p = Z(_l)‘k‘an+m+1—m(’f)’ Vn,m € Ng (320)

p<m k<1

Clearly, for d =1 (3.19) and (3.20) are equal.
Assume that (7) holds. Since

DPF(w) = Z —(n ﬁ!p)!bnw"_p,

nzp
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the hypothesis in (i) and the Cauchy formula yield

|b,,| < CAPlp? for alln, p € Nd n > p.

n!
(n—p)!
As n!/(n —p)! > e PIn?_ for n > p, we have

(cA)Ps
|b,| < C’H inf (e pj , neNd. (3.21)

pj <n;

Of course we can assume A > 1. Then, if p; > n;,

eA)Pipt eA)ini"
( )pjp] Z ( ) J

n nn] Y
J J

and so the infimum in (3.21) can be taken varying on p; > 0, j = 1,...,d. Thus,
(12, (2) and (3), p. 169-170] imply, with suitable ¢ > 0 and a’ > 1,

A) J apj 1/«
|b|<CHmf < da ™" n e N
J

Observe that for p,n € N& with p > n, we have

1/a

Pl (Ip = nf'* + [n]'/).

l\DI»—t

Thus, if we put a = v/a’ > 1 we have
L e L R (N | )

The above estimate for |b,| together with (3.20) implies that for all n,m € Ng

‘an‘ < Z ’bn+1+p’ + Z |an+m+1—m(k>|

p<m k<1
EZ1

/ 77),1/‘3‘ _|p|t/e
a1 S S o

=

_nl/a
= ca I + E ’an+m+1fm(k>"
k<1
kZ1

IN

The last sum has exactly 2¢ — 1 terms and since k # 1,
In4+m+1—m®| > |n| +min{m|l=1,...,d}.

Let n € Ng be arbitrary but fixed. Since the above estimate for |a,| holds for

arbitrary m € Ng and since a, — 0 as |n| — oo (by hypothesis), this implies
_ /a

|a,| < ca™ M
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Assume now that (i¢) holds. Then (3.18) implies the existence of a > 1 and
¢ > 0 such that |b,| < ca """, Vn € N¢. Observe that ny/“+ .. .—I—n;/a < d|n|"/*.
Hence, by putting a’ = a'/¢, we have

_ 1/a — l/a
a~ " | |a ™

Jj=1

U

Now, for p € N¢ and w € D we obtain

|DPF(w \<Z Sl < CZHTLPJ a'".

n>p ENd J=1

Since p(z) = aPu™"", x> 0 (u > 1, p € Ny) attains its maximum at z =

(ap/Inwu)®, we proved (3.17). O

We will prove in Proposition 3.3.5 that for f € G2(R%), the analytic function
Fp(f) satisfies part (i) of the previous proposition. In order to prove this we need
the next result; its proof is analogous to the proof of [9, Theorem 3.3| for the one
dimensional case and we omit it.

Proposition 3.3.4. Let f € G,(R%), a > 1. Then there exist constants C, A > 0
such that

|DP Fp (f)(w)] < CAPlper p e N&, weD, Rew; <0, 1 =1,...,d.

Proposition 3.3.5. Let f € G¢(R%), a > 1. Then there exist constants C, A > 0
such that
|DPFo(f)(w)] < CAPp*?, p e N§, w e D (3.22)

and limy,_1 Fp(f)(w) = 0.

Proof. As f € S(R%), Proposition 3.3.2 implies that lim,,_,q Fp(f)(w) = 0.
We introduce some notation to make the proof simpler. Let

= VLN C L dy and AT = (N N = {1, AN

For ¢ € C? (or in ]Ri, or in N@), by abusing the notation, we write ¢ = ((ar, (ar)
where

(v = (G5 Q) and G = (G- G )

d//

Let A’ be the biholomorphic mapping from C? onto itself defined by Aw = ¢
where
C)\E = —IU)\E, = 1,...,d/ and C:)\/S/ =Wy, §= 1,...,d//.

Also, denote
D(A/) = {C S D’RGCA; >0,1= 1,...,d/, and RGC)\/S/ <0, s= 1,...7d//}

(note that D) consists of all w € D such that the coordinates of w have non-
positive real parts).



44
For f € S(RY) let a, = (f,L,), n € N&. Then, Proposition 3.3.2 implies
Fpflw)=(1—w)* D nend Gnt"™, w € D. As

nA/1+...+n)\/

HM L) = (1)

a Qp,
we obtain
FoHS ) fw) = 1 —w)' Y (~1)™ a0t we D.
neNg
Now,
(W) oy (A7 L+ wy .
Fo(Hy 'f)(Nw) = Hl—w)\/ (1 —w) Zanwm weD
I=1 ! nENg
Thus

Fof(w) = (H - w”) FoH{ ) (Aw), weD, feSRY).  (3.23)

Let f € G2(R?%). Since HéA/)f € G%(R%) (cf. Corollary 3.2.2), Proposition 3.3.4
implies the existence of A, C > 0 such that

D”]?D(HéAl)f)(w)‘ < AP e N& Vw € Dy, VA’ C {1,...,d}. (3.24)

Observe that for w € Dy, (3.22) holds by Proposition 3.3.4. To prove (3.22) for
w € Dy when 00 # A C {1,...,d}, we need an estimate for the derivatives of
the function

1-¢
Since (1-¢)/(14+¢)=2/(1+()—1and |1 +¢| > 1 when Re( > 0, for j € N we
have

L B | P < 24!, when |¢| <1 and Re¢ >0 (3.25)
dii\11¢)| " iy = " =" ’
Clearly, (3.25) also holds for j = 0. Now, observe that A’(D() = D). Hence,
for w € Dy, (3.23), (3.24) and (3.25) imply

D Fof(w)l < (ZAA/,)Qd'mA")D:zxc—mA'ngcchméA’)f)(&'w)
mA/SnA/

T am — _ an
< Cl E my, A’A|n| ‘mA/‘(nA, _ mA,)O‘(nA/ mA/)nA”A”
TN
mpar<n,s

< Oy (24)Mlpen,

which completes the proof. O]
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Now, Proposition 3.3.1, Proposition 3.3.5, Proposition 3.3.2 and Proposition
3.3.3 give the main result of this section:

Theorem 3.3.1. ([9, Theorem 3.6/, for d=1) Let o > 1. For f € L*(R%) let

an= [ f)L.(t)dt, n €N

m
The following conditions are equivalent:

(i) There exist ¢ >0 and a > 1 such that

la,| < ca ™" forn e N¢.

(i1) f € Ga(R%).
(¢3i) There exist C, A > 0 such that
|DP Fp (f)(w)| < CAPIp?  forp e N¢  and we D
and limy,,_1 Fp(f)(w) = 0.

Conversely, given a sequence {an}nena satisfying condition (i) or given F € O(D)
of the form F(w) = (1 —w)'Y", a,w™ with a, — 0 as |n| — oo which satisfies
(3.17), there ezists f € GE(RL) such that a, = fRi f&)Ln(t)dt and Fp(f)(w) =
F(w) forw € D.

3.4 Topological properties of G2(R?), o > 1

As we shell see, we gain deep insights into the topological structure of Gg(Ri),
« > 1 by Theorem 3.3.1. Let ¢ : G2(R%) — s, «(f) = {{/, L) }neng- Theorem
3.3.1 proves that ¢ is a well defined bijection.

Theorem 3.4.1. Let o > 1. The mapping
v GRRY) — 5% o(f) = {{f, Ln) b neng

is a topological isomorphism between G%(R%) and s*.
In particular, G%(RY) is a (DFN)-space and (G2(R))" is an (FN)-space.
For each f € G%(R%), ZneNgU, L)L, is summable to f in G¢(R%).

Proof. If we consider ¢ as a linear mapping from G%(R%) into s (s* is canonically
injected into s) then ¢ is continuous since it decomposes as

Go(RY) — S(RY) S

Y

where the first mapping is the canonical inclusion. Hence, ¢ has a closed graph in
G%(R%) x s. Since the range of ¢ is in s* and s* is continuously injected into s, the
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graph of ¢ is closed in G%(R%) x s*. G%(R%) is an injective inductive limit of (F)-
spaces. For this reason, G%(R%) is ultrabornological (see Proposition A.8.3; every
(F)-space is ultrabornological). Moreover, s* is a webbed space of De Wilde (see
Proposition A.8.2). Hence, the closed graph theorem of De Wilde (see Theorem
A.8.1) implies that ¢ : GZ(R%) — s is continuous.

Also, s* is ultrabornological since it is bornological and complete and G%(R%)
is a webbed space of De Wilde (see Proposition A.8.1; every (F')-space is a webbed
space of De Wilde). The mapping ™' : s* — G%(R%), which has a closed graph,
is continuous by the De Wilde closed graph theorem (see Theorem A.8.1).

Now, Proposition 1.3.1 implies that G2(R%) is a (DF N)-space and (G%(R%))’
is an (F'N)-space.

Given f € G%(R%), let a,, = (f, L,). For each finite & C N{, denote

fo = Zanﬁn € Gg(Ri)

ned

(since £, € G%(RZL)). Let a > 1 be such that ¢(f) € s** Fix 1 < a’ < a. One
easily verifies that for each € > 0 there exists finite ®; C NZ such that for each
finite ® C N¢, satisfying ®; C @, we have

[e(f) = e(fo)l[sou < e

Since ¢ is an isomorphism this implies that for each neighbourhood of zero V' C
G%(R%) there exists finite &y C N¢ such that for finite & O 4 we have f— fo € V,
ie. ZneNg anLy is summable to f in G2(R%). O

Theorem 3.4.2. Let o > 1. The mapping
L2 (GaRY) — (%), UT) = {(T. La) bneng

s a topological isomorphism.
Moreover, ZneNg (T, L)L, is summable to T in (G(RL))'.

Proof. By Theorem 3.4.1, both the transpose of ¢, o : (s*) — (Gg(Ri))” and
its inverse (“2)7' : (G%(R1)) — (s*) are topological isomorphisms. For T €
(G3<Ri)),> let {bp}n = (4)"Y(T). Then

(T, L) = <tb({bn}n)7£n> = ({bn}n, t(Ln)) = bn.

Thus,
{(T, La)}n = {bu}n = (") H(T) € (57)'.
Hence, 7 is in fact a topological isomorphism

(‘)7 (Ga(RY) = (),

By the similar approach as above, one proves that ZneNg (T, L)L, is sum-
mable to T in (G2(R%))". O
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For T € (G%(R%)), by Lemma 3.3.1, FpT € O(D). Since > (T, L)L, is
summable to T in (G2(R%))’, by the same method as in the proof of Proposition
3.3.2, one proves the following result.

Proposition 3.4.1. Let T € (G2(RL)), « > 1 and b, = (T, L,), n € Ni. Then,

Fp(T)(w) = H(l — wj) Z byw", w € D.

j=

—_
3
m
Z,

o

In particular, if FpT =0 then T = 0.

3.5 Kernel theorem for G%(R%) and its dual space
In this section we state the Schwartz kernel theorem for G%(R), a > 1 and its
dual space. We review the topological tensor product theory in Appendix A.5.
Theorem 3.5.1. Let o« > 1. We have the following canonical isomorphism:
G RE)BGRE) = Gy(RE )

and

(GR(RY))D(GR(RY)) = (Go(REF®)) = L(GL(RP), (Ga(RY))).  (3.26)
Proof. For simplicity, put d = d; + da. Let 53 , s, and s be the d;-dimensional,

the do-dimensional and the d-dimensional variant of the space s®, respectively.

!~

Firstly, we prove that (s )®(s3,)’ = (s*)’, where an isomorphism is given by
the extension of the canonical inclusion

(5.) ® (5) = (52 {utnpqgts ® {0} g+ Lm0} e

Observe that the mapping

({un}neNgl ) {Um}mENSQ) = {unvm}(n,m)GNg7 (831)/ X (832)/ — (Sa)/

is continuous. Hence, the 7 topology on (s§ )’ ® (sg,)" is stronger than the induced
one from (s)".

Let A and B be the equicontinuous subsets of (s )") = s§, and ((s3,)")" = s3,,
respectively (s® is reflexive since it is a (DFN)-space). Hence, there exist C' > 0

and r > 1 such that

|1/
|<{un}n€Nglv{an}n€Ngl>| <C Z |t |7 I

neNgl

for all {a, 4, € A and for all {u, 4 € (s9) and
neNy neNg d

i/
({0 e (b i) € C 3 folr ™

meNSQ
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for {bm}meN§2 € B and {vm}meNSQ € (sg,). Let

I
{X@m) } namyeng = Z{ugj)}nel\?ﬁl ® {U%)}meN? € (s3,) @ (sg,)"
j=1

Then, for {a,} _u € A and {b,} e € B, we have
0 0

K{X(n,m)}(n,m)v {antn ® {bm}m>| = ‘(Z{ug)}n <{U£72)}m> {bm}m> Atntn)

l

= [ e by} )

j=1
!
S Z ‘Z<{U£{)}m,{bm}m> u) ]/
neNgt  J=1
!
-0 <{Zu£‘j)vg)} a{bm}m>’7"*lnll/a
neNd j=1 m
0

—n|t/ ||/
r I < G2 tam) Yy sy

3

<o Y ‘iug)v(j)

We can conclude that the e topology on (s§,)'®(s§, )" is weaker than the induced one
from (s*)". Since (s*)" is nuclear, these topologies are identical. Clearly, (s3,)’ ®
(5§,)" is dense in (s§)’. Hence, we proved the desired topological isomorphism.
As all spaces in consideration are (F'N)-spaces, by duality we have Sgl®s§2 =
s*. Note that the isomorphism is in fact the extension of the canonical inclusion

K sy ®8g, — 8% K({an}n @ {bm}tm) = {@nbm}mm)-
Now observe that the diagram

(67

« «
Sq, @ Sg, S

LXL L

G2(RY) ® G2(R?) —— G2(RY)

commutes, where the bottom horizontal line is the canonical inclusion f®g(x,y) —
f(z)g(y). Since k extends to an isomorphism, by Theorem 3.4.1, it follows that
the canonical inclusion G%(RY) ® G%(R%) — G(R%) is continuous and it extends
to an isomorphism G%(RY)®G(R%) 2 G2(R%). The assertion

(GaRL))B(Ga(RY)) = (GA(RL))

can be obtained by the duality of an isomorphism G¢(R%)&GS(R?) = G2(R%)
since G2(R?) is a (DF N )-space. O
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The isomorphism (3.26) calls for some comment:
To every K(z,y) € (G2(RET%))" we may associate a continuous linear map-
ping K of G%(R%) into (G%(R%))" in the following manner: if v € G2(R%), then

(Kv)(x) = /Rd2 K(z,y)v(y)dy € (GZ(RT))’.

Theorem 3.5.1 states that the correspondence K (z,y) <» K is an isomorphism.

3.6 Topological isomorphism between G¢(R%)
and S"? (RY)

a/2, even

We will be particularly interested in the subspace S .., (R?) of S¢(R?) consisting
of all "even” functions in S¥(R?), i.e. of all ¢ € S2(R?) such that

w<x1,...,SEj,l,—xj,iCjJrl,...,l'd) :w(l'), (327)
forall z = (x1,...,29) €RY j=1,...,d.
Proposition 3.6.1. The space S oo, (R?) is a closed subspace of S(RY). In par-
ticular, it is a (DFS)-space. Moreover, S oon(R?) consists of those 1) € SS(R?)

which can be represented as v = ZneNg aonhoy, where {agn}neNg € 5%,

Remark 3.6.1. Before we give the proof of this proposition, we want to explain the
meaning of {az, }peng € 52> Tt should be understood as the sequence {bk trena €
s such that the elements with indexes k = 2n, n € NZ, are equal to ay, and all

the rest are equal to 0. In this section, whenever we use this notation, it will have
this exact meaning.

Proof. The fact that S ...,(R?) is a closed subspace of SY(R?) is trivial. It is
a (DFS)-space as a closed subspace of a (DFS)-space. If ¢ = ZneNg anh, €
Sa(RY), then a, = [z, ¥(2)h,(2)dz and {a,},eng € 5°* (cf. Proposition 1.6.1).
Since hj(x) is even when j is even and is odd when j is odd, the last assertion in
the proposition follows. n

From now on, we fix @« > 1. The goal of this section is to give the explicit
topological isomorphism between G(R%) and SYZ (RY).

/2, even
Throughout this section, we denote by v and w the following mappings:
v: R - RY, v(x) = (27,...,23),

w:@—)ﬂ@r, w(x) = (VT1, ... \/Td).

For v = (71,...,74) € R? such that —y; ¢ N, j = 1,...,d and m € N¢, we use

the abbreviation
d
AN Vi
(o) =110 )

j=1

Moreover, we introduce the following notation 1/2 = (1/2,...,1/2) € R% and
3/2=(3/2,...,3/2) € R%.
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Proposition 3.6.2. Let ¢ = ZneNg anly, be an element of GS(RY). Then ¢owv is
in 82 (R and

a/2,even

pov= Z banhon,

nGNg

where {ban}pena € 5% is given by

Inl d/4,/ 2 —1/2
by, = T n) Z ak+n( / ), n € N4, (3.28)

|”|n|

keNg
Moreover, the mapping
¢ pov, GARL) =82 (RY,

a/2,even

1S @ continuous injection.

Proof. By (1.12), for n € N¢ we have
—1/2\ _ _
Lo(z) =) (m / )Lni{j(:c), zeRY
By (1.14),

_ 1 .
L7V = (22]) Hy(t), t € R, j € Ny,

Thus, for z € R, n € N¢,

— 1)n=ml n—2m)!
l(v(z)) = ”d/4z( 1/2>< : - 2 )'h@(n—m)(fv)

— m 2ln=ml(n — m)!
_ oy (e 2 EUV (3.29)
n—m 2|m|m'

m<n

Let ¢(z) = ¢(v(x)), x € RL Clearly, 1 € C(R?). Observe that,

V()=o) = Y anla(v(2))

neNd

e (T

neNd m<n

We will prove that the double series is absolutely convergent in L>(R%). By (1.16),
we have |h,(x)| <1, for all n € N¢, x € R For j € N, we have

<J’ —.1/2) _@-or_ @ (3.30)

] 2451 27 41
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This inequality trivially holds for j = 0 since, in this case, the left hand side is
equal to 1. Hence,

. (n —m— 1/2) |m|\/—h2m

n—m 2lmlm,

)| < lan|, € RY, n>m.

Since {an }peng is in s* (cf. Theorem 3.3.1), the double series in the equality for

¥(x) converges absolutely in L>®(R%). Thus, we can change the order of summation
in order to obtain

vy = wn Y COVEIE S, ("‘m‘ 1/ 2)

n—m

meNg n>m

= Z bgm hgm (I)

meNg

where

b2m -

|m| d/4 _
T /(2 Zan+m(n n1/2)7 m e N

2mlm)
nENd

If ¢ varies in a bounded subset B of G%(R%), then the sequence {an}neng varies in
a bounded subset of s* (cf. Theorem 3.4.1). Since s* is a (DF'S)-space there exist
C,a > 1 such that |a,| < (]a""'l/a, Vn € N¢. The Cauchy-Schwarz inequality
yields

In|"* 4 |m|Y* < 2(In| + |m|)V*, ¥n,m € NI, (3.31)

Thus,
_ 1/a 7n1/o< 7m1/a
qIntml S\/al\\/all.

Hence, there exist a’, C" > 1 such that

_ 1/ _ 1/«
|an+m| < C'a In| a [m| .

Using (3.30), we can estimate by, as follows

[ba| < Cla TN @ < O e N,
neNg
where a” = /*/2"*. Hence, when ¢ varies in B, the sequence {b2m }meng varies in
a bounded subset of s*. Thus, the mapping
(b = ¢ o, Gg(Rd) - Scc://22 even<Rd)7
is well defined and it maps bounded sets into bounded sets (cf. Proposition 1.6.1

and Proposition 3.6.1). As Gg(Ri) is bornological, the mapping is continuous.
Clearly, this mapping is injective. O
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Proposition 3.6.3. Let ¢ = ZneNg aophon € Sz//;’even(Rd). Then, Q/J‘Ri ow €
G2(R%) and

Yipe 0w = > bula,

nENg

where {bp},ena € s* is given by

_(_1)|n|2‘n| k—3/2\ (=1)*M2W¥ (k4 n)lag 0 n d
T Z( N ) VD ,neN. (332

keNd
Moreover, the mapping

Y Yre 0w, Soly . (RY) = GA(RY),

18 @ continuous injection.

Proof. We represent hs,, through the finite Laguerre series. From (1.14), follows
Hyy () = (—1)"22Mn) L712 (0 (), = € RY, n € NG.

Thus, by using (1.12), we have

Hy,(x) = 1)ml2inl ) Z ( - 3/2> L(v(z)), z € RY n e NI,
—1)Mn 2‘"|n 2 n—m
hala)) (Wi/l T 2 (e 339

x € @ and n € N&. Let ¢ = ZneNg asnhon € 82 (RY). Then {azn}neng € 5°

a/2,even

(cf. Proposition 3.6.1). Hence, there exist C,a > 1 such that
|azn| < Ca™ 2" wn e N (3.34)
Let ¢(z) = ¢p(w(x)), z € RY. Clearly, ¢ € C(RL). We have

—1)lay, 2”n2 n—m—
o) = Y EOE PSS (T . e

n —_—
neNd m<n

By (1.5), |ln(x)] < 1, for all x € @, n € Nd. Similarly as in (3.30), we have

(n—m—sm

n—m

)‘ <1, for all n > m,n,m € N%

Since,
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for some C'; > 1, we obtain

(—1)i" [22nln12 (n —m— 3/2) ()

<C 1)4/? 3.36
/A (2n)! n—m < Cil(fnf + 177, (3.36)

where n,m € N&, n > m. By using (3.34), we can conclude that the series on the

right hand side in (3.35) converges absolutely in Lm(@). Thus, we can change

the order of summation in order to obtain ¢(x) = ZmeNg bl (), where

 (=1)imigim] n—3/2\ (=12 (n 4+ m)lag,om
bm_TZ( n ) (2n 4 2m)! ‘

nGNg

To estimate b, we can perform analogous technique as for (3.36). Hence, we
obtain

bl < Co > (In+ml + 1) 427 2re2ml < 0 N gl Dy e N

neNg neNg
for some 1 < @’ < a. Now, (3.31) implies that there exist C”,a” > 1 such that
|b| < C"a" 17 ym e NE,

iLe. {bmtmene € 5% Thus, ¢ € G2(R%). If ¢ varies in a bounded subset B
of SZ‘/@ wven(RY), then (3.34) holds with the same C,a > 1 for all the sequences
{az}nene generated by ¢ € B (since Sg//;even(Rd) is a subspace of a (DFS)-
space 83/22 (R9)). Thus, from the above proof it follows that {bm}mena varies in a
bounded subset of s*, i.e. ¢ varies in a bounded subset of G%(RZ). Hence, the
mapping

Y Prg 0w, Sola (R = GA(RY),

a/2,even

is well defined and maps bounded sets into bounded sets. As S°12 (RY) is a

a/2,even

(DF'S)-space (cf. Proposition 3.6.1), it is bornological. Hence, the mapping is
continuous. The proof for the injectivity is trivial. O]

Combining the above two propositions, we obtain the following result.

Theorem 3.6.1. The mapping
o= pov, GARY) = i en(®Y)

a/2,even

1s a topological 1somorphism. If ¢ = ZneNg aply, then pov = ZneNg banhon, where
{bon}nene € s* 1s given by (5.28).
The wnverse of this mapping is given by

Y Ype 0w, Soly L (RY) = GE(RY).

a/2,even

If ¢ = ZneNg agnhaon, then ¥ ow = ZneNg buln, where {by},cna € s is given by
(3.92).
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For the moment, we denote by X the subspace of (S%(R?))" consisting of all
T € (82(RY)) such that T = ZneNg aznhaoy for some {as,}peng € (s?@). Of
course, these are exactly the "even” tempered ultradistributions, i.e. the elements
of (8%(R%))" which remain unchanged under the antipode mappings in each co-
ordinate (cf. (3.27)). It is easy to verify that X is closed subspace, hence, it is an
(F'S)-space.

Proposition 3.6.4. The strong dual of S
X.

Proof. By Proposition 3.6.1, 8% ..,(R?) is a (DFS)-space which is a closed sub-
space of the (DFS)-space S%(R%), hence, Theorem 2.4.4 implies that the strong
dual (82 ...(RY)) of 8« ..(R?) is topologically isomorphic to the (FS)-space

«, even «, even

(S5 (R))'/ (88 even(RY))* where

o, even

R?) is topologically isomorphic to

, even(

(S5 even(R)) T ={T € (ST (R))(T,¥)) =0, V¥ € S5

a, even Rd) }

,even (

(R%). Denoting by T € (S*(R%)) /(S woun(RH))E

o, even

is the orthogonal space to 87 oven
the coset of T' € (S2(R%))’, we define the mapping
I:X = (S2(RY)/(S5 even(R)) ™,

o, even

I(T) = T. It is easy to verify that I is injective. For T' € (S(R%))' /(82 ,ven (R?))*

let T =Y, bahn. Then Ty = Y2, bophon € X and T — Ty € (82 oyen(R%))". Hence,
I(n) = T, which proves the surjectivity of I. Moreover, I is continuous since it
decomposes as

X = (STRY)) = (Sa(RY)'/(S2 even®RD)) ™,
where the first mapping is the canonical injection and the second is the natural
mapping. Since X and (SZ(R?))"/(SS even(R?)) " are (F)-spaces, the open mapping

theorem proves that I is topological isomorphism. O

Remark 3.6.2. Until the end of this section, we will identify (S ..e,(R?))" (the

strong dual of SF .., (R?)) with X. It follows directly from the proof that each
T € (8% .ven(R?)) can be represented as > _nend banhan, where {ban},cng € (52

and for ¢ = ZneNg anhon € 8 cven(RY), we have (T, 1)) = ZneNg a2,boy, .
If we denote by J the isomorphism

Y Pre 0w, Sola o (RY) = GE(RY)

a/2,even
and by J71 its inverse

T ¢ pou, GA(RY) = 82 (RY),

/2, even

then the transpose ‘J is an isomorphism between (G2(R%))" and (Ss//; wven (R

By Proposition 3.6.4 (and Remark 3.6.2), for T'= Y anl, € (G2(R%))’ there
exists {ban }pena € (%)’ such that

9T =) banha, € (SS(RY)).
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Then, (3.33) implies

Similarly, given T' = 3" asnhay € (S§, even(Rd))/ HI YT € (G2(R)). Hence,
= Z bnln7

for some {b, },ene € (5)". The equality (3.29) implies

by = (3T, 1) =74 Y (” —m—1/ 2) DRVACT [

n—m 2|m|m'

m<n
Since {(T71) = (*J)~1, we have proved the following theorem.
Theorem 3.6.2. The transpose 'J of the isomorphism
31 P 0w, Sola (R = GA(RY),

a/2,even
s a topological isomorphism
32 (GARY) = (Se/;. even(RY)'

The image of Y., axl, € (G2(RL)) under this isomorphism is Y, baphoy,
where {ban}pena € (%) 1s given by (5.57).

The inverse of this isomorphism, (*J3)~' maps >, aspho, € (Sz//; wwen (RD) o
> baln € (GE(RL)), where {b, Fneng € (s%)' is given by (3.38).

3.7 Structural theorems for (G%(R%)), a > 1

In this section we state two structural theorems for (G%(R%)), a > 1.

3.7.1 The first structural theorem

For the terminology used in this subsection, we refer to Appendix B.

Remark 3.7.1. We will need the following estimate in the sequel

S‘j asl/a
ZWSG , 20,021 <3’39)
=0 /"
Moreover,
57 sile\® 13 (s \” o
sup — = (sup —) > —Z ( . ) =27/ g >0, a > 1,
j€Np .]' Jj€Np j' 2 =0 2Jj'

i.e. there exists ¢ > 0 such that

, §>0,a>1. (3.40)



56

Before we state the next result, notice that the operator

d

1\ M
RF=T] (%Dij + Dy, — "Z—] + 5) , keNg. (3.41)

j=1
is continuous on S(R%) and on 8'(R%) (recall (1.4) for the definition of R).
Lemma 3.7.1. For each k € NI, R* acts continuously on G%(R%).

Proof. 1f ¢ = ZneNg anl, varies in a bounded subset of G%(R%), then {an}nend
varies in a bounded subset of s*. Since ZneNg ayl, converges absolutely to ¢ in

S(R%), we have
RF¢ = Zaanln = Zan(—l)lklnkln

n

and the series converges absolutely in S(R%).
It can be easily proved that {an(—1)|k|nk}n€Ng isin s* and when {ay },,cna varies

in a bounded subset of s* so does {an(—1)|k|nk}n€Ng. Hence, R* is well defined as

a mapping from G%(R%) onto itself and it maps bounded sets into bounded sets.
As G%(R%) is bornological, R¥ is continuous. ]

By duality, we can define the transpose *R¥ of R* as a continuous operator on
(Ga(RY))". IET =37, g buln, then one easily verifies that

'RAT =" by (—1)FInf,,

(since {bn},ena € (s%)', the sequence {bn(—1)|k|nk}n€Ng also belongs to (s*)" and
thus the right hand side is a well defined element of (G2(R%))’). We come to the
conclusion that ‘R* coincides with R* when T' € G2(R%) C (G%(R%))’. Hence,
from now on, we will write R* instead of 'RF.

By Remark 3.7.1 and Proposition B.0.1, P(2) = ) ¢,2" is an ultrapolynomial
of class {p!*} if and only if for every h > 0 there exists C' > 0 such that

|P(z)| < CeMH? vz e

Next, for a given ultrapolynomial P(z) =) ¢,2" of class {p!*}, we will show
that the operator ) ¢, R", denoted by P(R), is a well defined and continuous
operator on both G%(R%) and (G2(R%))". In the proof we will use the fact that
L, (G2(RL), G2(RL)) and Lp((G2(RL)), (G2(R))’) are complete (cf. Corollary
A.4.1; notice that G%(R%) and (G%(R%))" are bornological and complete spaces).

Lemma 3.7.2. Let
P(z) = Z cp2"
nENg
be an ultrapolynomial of class {p'“}. Then,
Z c, R"
nENg

converges absolutely in both L,(G2(RL), G2(RL)) and L,((GX(RL)), (G2(RL))").



57

Proof. Since Gg(Ri) is a barrelled and complete space, its topology is given by
the system of seminorms

¢ — sup (T, ¢)|,

TeB!

where B’ ranges over all bounded subsets of (G2(R%))". Hence, the topology of
L,(G2(RL), G2(R?)) is given by the system of seminorms

® — sup (T, P(0))],

TeB'
¢eB

where B and B’ range over all bounded subsets of GZ(R%) and (G%(R%))’, respect-
ively. To prove that ZneNg ¢, R™ converges absolutely in £,(G%(R1), G%(R%)), we
have to prove that for each such B and B’,

> lea| sup (T, R"¢)| < oo. (3.42)
q TeB’
neNg $EB

Now, fix such B and B’. Let

= angl,, ¢E€B

and
T=> burl,, TEB.

Thus, {{ans}n|¢ € B} is bounded in s* and {{b,r},|T € B’} is bounded in
(s*)'. There exist a,C' > 1 such that

a6 < Ca """ for all n € Ng, ¢ € B.
For this a, choose 1 < b < a'/*. Then, there exists C; > 0 such that
|bor| < CLO™M for alln e NL T € B'.
Moreover, there exist s,C5 > 1 such that
Im|"l < Cos™ b |12 for all n,m € NE.
Hence,

sup (T, R"¢)| < sup Y _ |amgllbmr||m|™ < Css™|n[1*, vn € Ng.
TeB’ TeB' d
#EB ¢eB MENy

Since P is an ultrapolynomial of class {p!®}, the last inequality implies (3.42).
The topology of Ly((G2(RL)), (G%(R%))’) is given by the system of seminorms

® = sup [(®(T), 9)],

TeB’
¢eB



58

where B and B’ range over all bounded subsets of G%(R%) and (G%(R%))’, respect-
ively. To prove that ZneNg ¢, R™ converges absolutely in £,((G%(R%))', (G2(R%))")
we need to prove that for each such B and B’

> fea| sup [(R"T, )| < oo.

neNg ﬁ%%
This can be done by the same technique as above. O

Before we prove the main result of this subsection, we state the following three
technical lemmas. The first one is proved in [34].

Lemma 3.7.3. (/34, Lemma 2.4]) Let g : [0,00) — [0,00) be an increasing func-
tion such that satisfies the following estimate: for every h > 0 there exists C' > 0
such that g(t) < M(ht) +InC. Then there exists a subordinate function €(t) such
that g(t) < M(e(t)) +1InC’, for some constant C' > 1.

For the definition of a subordinate function see Appendix B, Definition B.0.1.

Lemma 3.7.4. Let B be a bounded subset of (s*)'. There exists a sequence {ry}pen
of positive numbers such that increases monotonically to infinity and C" > 1 such
that

b < C'eN D for alln € N§, {by},eng € B.

Proof. Since B is a bounded subset of (s*), for every h > 0 there exists C' > 1
such that
b,| < CeMPImD - for alln € N4, {b,}, € B’

(cf. Remark 3.7.1). Define f : [0,00) — [0, 00) as

f(t) = Sup 1n+ |bk|7 te [0700)
k<t
{on}neB

One easily verifies that f is a nonnegative monotonically increasing function and
for every h > 0 there exists C' > 0 such that

F(t) < M(ht) + C.

Thus, we can apply Lemma 3.7.3 to obtain the existence of a subordinate function
€:[0,00) = [0,00) and C; > 1 such that

f(t) < M(e(t)) +Cy, te],00).

Now, Lemma B.0.1 implies the existence of a sequence N,, p € Ny, of positive
numbers which satisfies (M.1) such that

M(e(t) < N(8), t e (0,)
(N(-) is the associated function of the sequence N,) and

N,M,_,

— 00, asp— Q.
N,_1M,
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Define
N M,
r = PP p e N,
P N,.1M,

Since 7";, — 00, one can find a monotonically increasing sequence of positive num-
bers {r,}pen, Which tends to infinity and r, < r,, p € N. Then,

tpNO tP
f(t) < N(t)—i—Cl:supln —|—Clzsuplnﬁ+cl
PENo p peNy My szl r

tp
< supln————+C, =N, (t) + C).
peNg My [Tj_; 7 ’

By the definition of f, this readily implies the conclusion of the lemma. O

Let {r,},en be a sequence of positive numbers such that increases monoton-
ically to infinity. For any {r,},en, We can construct a new sequence such that
the zeroth term of the sequence is equal to 0!* = 1 and the p-th term is equal to
ple H§:1 r;, p € N. This sequence also satisfies the condition (M.1) (see Appendix
B) and one can define its associated function which we denote by N, (-). The
next lemma is proved in [33]; here R stands for a set of all sequences of positive
numbers such that increase monotonically to infinity.

Lemma 3.7.5. (/33, Lemma 2.1], Roumieu case) Let v’ > 1 and (k,) € R. There
exists an ultrapolynomial P(z) of class {M,} such that P does not vanish on R?
and satisfies the following estimate:

There exists C' > 0 such that for all x € R and o € N,

|
1D (1/P(z))] < C-2 e=Nu(lah),

- rllel

As a special case, we see that for any given sequence of positive numbers
{rp}pen such that increases monotonically to infinity, one can find an ultrapoly-
nomial P(z) of class {p!*} and C' > 0 such that

|P(z)| > Ce™» 13D for all 2 € RY.

Theorem 3.7.1. Let B' C (G2(R%))’ be a bounded set. There exists an ultrapol-
ynomial P(z) of class {p!*} and a bounded set B in L*(R%) such that for each
T € B’ there exists Fr € B satisfying

T = P(R)Fr € (G2(RY))".

Conversely, given a bounded set B in L*(R%) and an ultrapolynomial P(z) of
class {p!“},
P(R)F € (G%(RY)), for each F € B

and the set {P(R)F|F € B'} is bounded in (G2(R%)).
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Proof. Let T' = %, cna buln, T € B'. The set {{byr},ene| T € B'} is bounded
in (s*). Lemma 3.7.4 implies that there exists a sequence of positive numbers
{rp}pen such that not only increases monotonically to infinite but also

b | < C'eNe(mD for alln € N&, T € B,
We define the sequence {7} },en by
rp=min{l,r}, j=1,....d+1

and
7”; =Tj—d-1, jZ d+2, ] e N.
Then, {r,},en increases monotonically to infinity, 7, < r,, p € N and there exists

(1 > 1 such that

N, (29
v (290)

(td+1 + 1)€Nrp(t) S évle + 61\77“17(15)7 t E [07 OO)

Hence, if we define k, = 1, /27, peN, the sequence {k,},en increases monotonic-
ally to infinity and there exists C5 > 1 such that

(td—i-l + 1)€Nv-p(t) < CN’QGNkp(t), t e [0, OO)

By Lemma 3.7.5, we can choose an ultrapolynomial P(z) = 3~ cya cn2™ of class

{p!*} such that
|P(z)] > CeMellel | for all - € R

Lemma 3.7.2 verifies that P(R) acts continuously on G(R%) and on (G2(R%))'.
Observe that

>

nGNg

2
<0 Z e2Nrp (In]) g =2N5,, (In]) < Cy, VT € B'.

nENg

bn,T
P(—n)

Hence,

by,
Fr = 1, € L*(RY
T Z P(—n) € ( +)

nENg

and the set {Fp|T € B’} is bounded in L*(R%). As L*(RY) C (G2(R%)),
P(R)Fr € (G2(R%))". Moreover,

P(R)l, = Y cuBR" = cu(—n)"l, = P(—n)l,.

meNd neNd
Hence,
bnT
P(R)Fr = ~— P(R)I,, = borl, =1T.
(RFr = Y 2Pl = Y b
neNd neNd

The converse part of the theorem is trivial. O
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3.7.2 The second structural theorem

Remark 3.1.1 will enable us to prove the results of this subsection.

Proposition 3.7.1. Let A > 0. For each T € (ég:ﬁ(Ri))/, there ezists j € Ny
and Fa,r € L*(RY), p,k € N¢ and FA,n,m € Lz(Ri), n,m € NI with |n| < j,
|m| < j such that

3 A2|p+k\pap,€ak||FA’pﬁkH;(Ri)+ > ||FA,n,m||§2(Ri)<oo (3.43)

p,keNG |m|<j, [n|<j

and for all ¢ € ég:ﬁ(Ri)

1.0 = X [ Pl Do) ds

d
p,keENG

DY /R Fppm(@)a™ D" ¢ () da. (3.44)

jm|< Inl<j 7 B%
Conversely, given j € Ny and the set of L*(R%)-functions
{Fapelp,k € NG} U{Fanpl n,m € Ng, n| < j, Im| < 7}
such that (3.43) holds, there exists T € (égzi(Ri))’ given by (3.44).

Proof. For j € Ny, we define

Uj = |_| Ri,p,k I_I |_| Ri,n,m’

(p,k)eNZ? (n,m)GNﬁ’i‘
[n|<g, Im|<j

where, as standard, | | denotes a disjoint union. The each member of this disjoint
union is an exact copy of Ri. We equip U; with the disjoint union topology. Since
there are countably many copies of R‘i, U; is a Hausdorff locally compact space
and an each open set in U; is o-compact. We define a Borel measure p; on U; by

pi(B)y =Y ATPHprereMEARY I+ > [ENRY,,

(p,k)ENG? (n,m)ENG?
In|<j,|m|<j

where |[ENRY | and [ENRY | is the Lebesgue measure of E N RS, and

|[ENRY |, respectively. Note that F is a Borel set in Uj if and only if £NRY

+,n,m +7p7k
and ﬂ]Rﬂlﬁn’m are Borel sest in Ri@k and Ri’mm, respectively, for all p, k,n,m €

N¢, |m| < j, |n| < j. As readily seen, y; is locally finite, o-finite and 1;(K) < oo
for every compact set K in U;. By the properties of U, p; is regular (both inner
and outer regular). Now, observe that, for each j € Ny, ~313(Ri) is continuously
injected into L*(Uj, ;) by the mapping J; : ¢ — F, where F is defined by

Fpa =aP™M2DPg(x), pk € Nj
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and

Fpe —=a"D"¢(x), n,m € Nd m| <4, |n| <.
In fact,

|2 +8)/2 DP gy (22 >HL2(R’1

O = Y et 2 D0 e,
p,keNd Im|<j, In|<j
- /U F2du; = [Fla, (3.45)

IfT e (G’z:ﬁ(Ri)), there exist j € Ny and C' > 0 such that |(T, ¢)| < CG4;(¢).

Because of (3.45), T induces a continuous functional on &(éZj(Ri)) when this
space is equipped with the topology induced by L?(Uj, i;). By the Hahn-Banach
theorem, we can extend T to a continuous functional T on the whole L?(Uj, u;)
and hence T € L*(Uj, u;). Denote

FA’pJg — A*Q‘p‘Fk‘p*apk*akT‘Rd FAnm — T‘RJF
where p,k,n,m € N¢, |m| < 4, [n| < j. Then, Fapp, Fanm € L*(R?), for all
p,k,n,m € Ng, [m| < j, [n| < j and (3.43) holds since this is exactly || T|7.q, . )-

For ¢ € GaA(Rd) we have

(T, 6) = T(3;(0)) = /U 3,(6)Tdp;

J

_ / Fapi(@)e™ 92Dy de + 3 / Fa ()™ D" () d.

p.keNg Im[<j, [n|<j
The converse part follows trivially. O

Theorem 3.7.2. Let T € (G2(RZ)). Then, for each A > 0 there exist j = j(A) €
Ny and a set of L*(R%)-functions

{Fapalp b € Ng} U{Fanmln,m € Ng, In| < j, |m| < j} (3.46)

such that (3.43) holds and the restriction of T to each é’g:ﬁ(Ri) is given by (3.44).
If for each A > 0, there exist j = j(A) € Ny and a set of L*(R%)-functions
(3.46) such that (3.43) holds, then for each A > 0 there exists Ty € (@g:’:(Ri))’

given by (3.44).
Furthermore, if for each Ay < As, the restriction of Ta, to Ga AL '(RY) coincides

with Ta,, then there exists T € (G2(R%))" such that for each A > () the restriction
of T to Gg:ﬁ(Ri) is Ty, 1.e. for ¢ € Gg:i(Ri), (T, @) is given by (3.44).
Proof. The first part follows directly from Proposition 3.7.1, since the restriction

of T to each G2 (R%), A > 0, is continuous.

For the second part, observe that the existence of T4 € (ézzi(Ri))’ , for each
A > 0, given by (3.44) is verified by Proposition 3.7.1.
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Furthermore, if T4, A > 0, satisfies that for each A; < A, the restriction of
Ty, to Ggfﬁ (R%) coincides with T4, then one can define a linear functional

T:G2RYL) = C, (T,¢)=(Ta,¢), ¢€GUL(RL).

Because of this condition, this is indeed a well defined linear mapping into C. The
continuity of 7" follows from the fact that each restriction of 7" to Gzzﬁ(Ri) is Ty,

A > 0, which is continuous as a mapping from ég‘: onto C and the fact that
G%(R%) is the inductive limit of GZZQ(R‘D as A — oo. O
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Chapter 4

Weyl pseudo-differential
operators with radial symbols

Concerning pseudo-differential operators, especially the Weyl calculus, we refer to
the standard books [26] and [37].

This chapter is organized as follows.

Firstly, we will provide the motivations for introducing the Weyl pseudo-
differential operator. We will give the formal derivation of formula for the Weyl
pseudo-differential operator with symbol in S(R?).

Secondly, we will introduce the Wigner transform of functions in S(R?Y) as
a tool to study the Weyl pseudo-differential operators with symbols in S'(R?9).

Thirdly, we will refer to results of M. W. Wong [42] on the Weyl pseudo-
differential operator on L?(R) with radial symbols by which we were motivated.

Finally, we will establish the continuity of the Weyl pseudo-differential operat-
ors with radial symbols, firstly, at the level of the symbol classes Gg(Ri), a>1
and S(R%), on the Gelfand-Shilov spaces and the Schwartz space. Then we con-
sider the symbol classes (G%(R%)), @ > 1 and §'(R%) in order to extend the
results on dual spaces of the Gelfand-Shilov spaces and dual space of the Schwartz
space.

4.1 Problem of quantization

We present the main motivations for pseudo-differential operators from the point
of view of quantum mechanics following [14, Section 14.3]. We refer to the pioneer
work of H. Weyl [40, Chapter IV.14]. We explain the problem of quantization and
we obtain the formula for the Weyl calculus of pseudo-differential operators.

In quantum mechanic, the observable quantities are represented by self-adjoint
operators on a Hilbert space. In the standard model for a one-dimensional system
the position variable ¢ is represented by the multiplication operator X f(z) =
xf(z), and the momentum variable p is represented bu the differentiation operator
Pf(x) = —if'(z). We can state the problem as follows: which operator should be
associated to an arbitrary function o(q,p) on phase space. A quantization rule is
a linear mapping o — W, from functions o(q,p) on a phase space to operators
on the given Hilbert space that extends the correspondence ¢ — X and p — P to

65



66

general functions on a phase space.

In his approach, Weyl considered the corresponding one-parameter subgroups
of unitary operators ¢ f(x) = € f(z) = M,f(z) and e™Ff(z) = f(x + p).
Then he argued that the complex exponential e/ 4+¢P) should correspond to the
symmetric shift M, T, M,/ = e~pa/ 2T_qu. Now, the Fourier inversion formula

f(z) = (2m)~%? / € f(€)de, where f(€) is the Fourier transform of a function
Ra

f €S, (&) = 2m) ™2 fyu e f(a)dx gives

o(2,€) = (2) / / 6(¢, p) TP dpdg
Rd Rd

and the linearity of the quantization procedure suggest that W, should be the
operator

Wo = (27T)d/ / &(q,p)e 3 T_,M,dpdq.
R JRe

For us, it is more convenient to represent W, as an integral operator. Now,
we give a formal derivation of the Weyl pseudo-differential operator with symbol
o € S(R*)

Wah)w) = @0 [ [ slan)e T My ) dpdg
— (o) —i(pé+qu) Sigrtigh d¢dwdnd
en [ ][ ot et o 4 pdedadpa
= (2m)™ /Rd /Rd /Rd e o (w, &)6(x + g —w) f(z + p)dédwdp
= (2m)7¢ /Rd /Rd e o (x + g,&)f(:c—irp)dpd&
— (@2n) /R d /R K (x;yg) Fy)dyde, feSRY. (4.1)

Remark 4.1.1. The Dirac delta function can be loosely thought of as a function
on the real line which is zero everywhere except at the origin, where it is infinite,

0={"% T 7o

which is also constrained to satisfy the identity

/Ré(:v) ~ 1.

The delta function is an even distribution in the sense that d(z) = 6(—z). The

delta function is said to "sift out” the value at z = T i.e. / flx)o(x=T) = f(T).
R

The inverse Fourier transform of the tempered distribution f(§) = 1 is the delta

function. Formally, this is expressed as §(z) = [ e™dE.
R
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4.2 Weyl pseudo-differential operators with sym-
bols from (S%(R?*?))’

Let f,g € S(R?). Then the function W(f, g) defined on R?? by

e WP f <3: + ]—9) g (x — g)dp, z, & € R?

W(J.9)(e.) = (2m) 2 [ -

R4
is called the Wigner transform of f and g. The bilinear mapping (f, g) — W(f,9),
S(R?) x S(RY) — S(R??) is continuous.
Corollary 4.2.1. ([42, Corollary 3.4.]) W : S(R") x SR") — S(R?*") can be
extended uniquely to a bilinear operator
W L*(R") x L*(R") — L*(R*")

such that

W (f, g)lL2@eny = [ fll 2 l9]l L2 mn)
for all f and g from L*(R™).

Next theorem proves that the Gelfand-Shilov spaces are closed under the
Wigner transform.

Theorem 4.2.1. (/38, Theorem 3.8, p. 179]) Let f,g € S*(R?), a > 1/2. Then
W(f.g) € Sa(R*).

Moreover, we have the following proposition.

Proposition 4.2.1. A bilinear mapping
(f,9) = W(f.9), SI(R?) x S5(R) — S5 (R*),
18 continuous.

Proof. Fix g € S%(R?). If we consider a mapping f — W (f,g) as a mapping from
S2(R?) into S(R??) it is continuous since it decomposes as

Sa(RY) — S(RY) T SR,

where the first mapping is the canonical inclusion. Hence, its graph is closed in
S2(R?) x S(R?*). Since its image is in S%(R??), its graph is closed in S¥(RY) x
S2(R?*?). As S%(R?) is a (DFS)-space it is an ultrabornological and webbed space
of De Wilde (see Proposition A.8.2). Now, the De Wilde closed graph theorem
(see Theorem A.8.1) implies its continuity.

Similarly, for each fixed f € S(R?), the mapping

9= W(f9), Sa®R") — Si(R™)

1s continuous.

Thus the bilinear mapping (f,g) — W(f,7), S¥(RY) x S¢(R?) — S*(R*), is
separately continuous and hence continuous since S¥(R9) is barrelled (DF)-space
(see Theorem A.6.3). O
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The next theorem defines the notion of the Weyl pseudo-differential operator
with a symbol in &'(R?*).

Theorem 4.2.2. ([42, Theorem 12.1.]) For all o € S'(R*?) and f € S(R?),
W,f € S'(RY).

Let a« > 1/2. The Weyl pseudo-differential operator with a symbol o €
(82(R??))" defined by

(Wof)(g) = (2m)~ (0, W (f.,7)) (4.2)

is a continuous and linear mapping from S(R?) into (S¥(R?)) (see [29, Theorem

2]).

4.3 Weyl pseudo-differential operator with ra-
dial symbols from S'(R?)

For the Weyl pseudo-differential operator on L?(IR) with radial symbols, a sufficient
and necessary condition for boundedness is given in [42]. In order to obtain these
conditions, we need the Wigner transform of Hermite functions on R.

For j,k =0,1,2, ..., we define the function v;; on R? by

Vi@, &) = W(hy, hy)(w,€), x,§ € R.

Theorem 4.3.1. ([42, Teorema 24.1.]) For j,k = 0,1,2,... we get for any ( =
x + 1€,

() bsks(©) = 217 ) () (VRO LRI

(i) y5ua(€) = 2(=17 ) () (VR LRI .
Let o be tempered function on R2. Suppose that o is radial i.e.
o(z,§) =o(r), =, eR,
where r = \/m Now, by Theorem 4.3.1, for j,k =0,1,2,...1 5 > k,

Uin() = 2(-1)"2m) (%)%@M@j’“Li;’“@m?)e4'2 (4.3)

for all ( =z 4 i¢ u C. Now, for all f, g in S(R), we obtain
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(Waf)g) = (2m)"2a(W(f,9)

= (2m)"? (G, i) (f hj)o(Wie). (4.4)

Remark 4.3.1. Note that (4.4) is valid in the sense that we sum with respect to j
first and then with respect to k.

Now, for j,k =0,1,2,...1 j > k, we obtain by (4.3),
o) = / / o, ), €) dr d
2 1
_ / / )e(2m) 3 (k_') (V) K (p)i ke ii—R0

!
x L1~ "(2p%)e” ? pdpdf

2 1
T 00 EINE
- / e d / o(p) (5 ) 220 (— 1)k (2m)
0 0 J:
- L
x L1 F(2p%)e " P F L dp.

Hence,
o(je) =0, j#k.
So,
(W £)(g) = 2m) 7> (g, hie) (f Pk (W), (4.5)
k=0
where

0(¢k,k> = (27T)é(_1)k2/ U(p>L2(2p2)efp2pdp’ k= 07 17 27 ceey
0

for all f,g in S(R).

Remark 4.3.2. The convergence in (4.5) is valid in the sense that the sequence of
partial sums of the series is convergent.

Theorem 4.3.2. ([{2, Theorem 24.5.,p.115]) Let o be tempered function on R2.
Suppose that o is radial i.e.

o(x,&)=o0(r), z,§€R,
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where r = \/x?2 + &2. For k=0,1,... let
o= [ L2 i
0

Then Wy is a bounded linear operator from L*(R?) into L?*(R?) if and only if the
sequence {ag}72, is bounded.

Our goal is to prove Theorem 4.3.2 on S¥(R?), a > 1 and their dual spaces, as
well as on S(R?) and its dual space. As we shall see, we will obtain the assertions
without assumptions on the sequence {ay }72 , using the results obtained in Chapter
2 and Chapter 3.

4.4 Weyl pseudo-differential operators with ra-
dial symbols from G-type spaces and their
dual spaces

In this section, we prove the continuity of the Weyl pseudo-differential operators
with radial symbols from the spaces Gg(Ri), a > 1 and their dual spaces on the
Gelfand-Shilov spaces and their dula spaces. L

Throughout the rest of this section, we denote by v the mapping R?*! — R?

(2,8) = v(x,§) = (a7 + &, .., 25 + &)

Proposition 4.4.1. Let 0 € S(RY). Then ¢(z,§) = o ov(z,§) € S(R*).
Moreover, the mapping o — & = o ov, S(R%) — S(R*), is continuous.

Proof. Fix j € N. For p,q € N§, |p| < j and |g| < j observe that D?D{g(x,§) is a
finite sum of the form P(x,f)Dngg/a(v(x,f)), where P(z,£) are polynomials in
(x,&) of degree at most |p| + |¢| which do not depend on ¢ (they only depend on
the derivatives of v) and p/, ¢’ € N¢ are such that p’ < p and ¢’ < ¢q. Moreover,
observe that the number of such terms that appear in DﬁDg&(x, ¢) depend only
on p and ¢ (and not on o). For p”, ¢" € N¢ we also have

xp”é“Q” < |x|\p”\|§|\tf’\ < (|x|2 + |£|2)(|P'/|+|q/,|)/2.

Thus,

sup sup sup xp//fq”D;’Dg6(x,§) < C sup sup [t"D"o(t)].
Ip"|<j Ip|<j (2,€)eR2? In|<2j teR{
la"|<j laI<j [m|<2j

Hence, 6 € S(R?*¥) and the mapping
o6 =00v, S(RL) — S(R*)

is continuous. [
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Let a > 1/2 and o(p) € G32(R%). Denote by oo(p) = o(2p), p € RL. Then

2c
the functions ¢ and 7y defined by
5'(ZL',£) :O'OU(,I‘7§>, 5’0(ZE,§) :UOOU(I7€)7 (ZL’,f) Ede (46)

belong to S(R??) (see Proposition 4.4.1). Hence, the Weyl pseudo-differential
operator with a symbol &y is a continuous mapping from S%(R%) onto (S¢(R?))'.

Theorem 4.4.1. Let o > 1/2 and o(p) € G32(RL). Denote by ao(p) = o(2p),
p€RL. Let 5,50 € S(R*) be the functions defined in (4.6). Then

W5, : SS(RY) — S2(RY)
s a continuous mapping and it extends to a continuous mapping
Wi, : (Sa(RY)) — Sa(RY).
If .9 € (Sa(RY))" and

Je = (f, hw), gk = (9, hw) and oy, = (27T)d/2(—1)k2d/ a(p)Li(p)dp,

R
then
(Wan)(g) = 1) 2 fuguon.
keNg
Moreover, if
G33(RY) )
00,j(n) —— oo(n) as j — oo

then Wy, , — W, in the strong topology of L((S2(R?)), S (RY)).

Proof. First we W, of f,g € S*(R?). Since ZneNg fnhy and ZneNg gnh, converge
absolutely to f and g in SY(RY), respectively (cf. Proposition 1.6.1) and the

mapping
(. 0) = W(p,9), ST(RY) x SF(RT) — Sg(R*),

is continuous (see Proposition 4.2.1), we conclude
WD =D fngeW (b, hi),

(m,k)eNZd

where the sum converges absolutely in S¢(R??). As 55 € S(R*) C (S¥(R??))’, we
have

(Waof)(9) = 2m) ™% 3" frngi(Go, i), (4.7)

(m,k)ENZd

where 1y, 1, = W (hy,, hy). Clearly,

d
¢m,k = mer,km where ¢mr,kr = W(hmra hkr)
r=1

Using Theorem 4.3.1 and denoting 7, = x, + i§, € C, we have
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(i) If m, >k,

my:

1/2
Vmy b (Tr, &) = 2(_1)]%(27()71/2 <k_T"> (\/é)mrikr(nr)mr e
x Ly (2, [*)e (4.8)

(i) If k&, > m,

1/2
Vmy ber (Tr, &) = 2(_1)mr(2ﬂ-)_1/2 <7Z_T") (ﬁ)kr ﬁf”

XLy (2| *)e (4.9)

In terms of polar coordinates the integral

(G0, i) = / oo(v(a, &) bmn (i, €)dade
is
<00fwnlk 1nki[1t/ﬂ —i(mr—kr) rd@

Thus (79, ¥mk) = 0 when m # k. Moreover,

(G0, Vrp) = (27T)d/2(—1)"“2d/d (207, ., 200) Li(20%, .., 205)e” " ptdp
R+

_ (2m)i2 (1) /R () Laly)dy = o

By (4.7), we obtain
(W f)(9) = 2m) 2>~ frgron (4.10)

keNd

and the series converges absolutely since { f,.}rent: {9n tnengs {00 bnene € s** (since
f,9 € Sa(RY), o € GR(RY)).
Let now f, g € (82(R%))". Define

(Waf)(9) = 27) 2 3 fugaon.

nENg

Observe that the series converges absolutely since { fn}neNg, { gn}neNg € (s**) and
{on}nent € s (o € G32(R%); cf. Theorem 3.4.1). Thus, if we fix f € (S2(R?)),
the mapping

g+ (W5, )(9), (Sa(RY) = C,

is a well defined linear mapping. To prove that it is continuous let B be a bounded
subset of (S§%(R?))". Thus for each a > 1 there exists C' > 0 such that

|k|l/(2a)

lgk| < Ca , Vk e N, Vg € B.
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Hence,
sSup |(W50f)(g)| < o0,
geB

i.e. Ws,f maps bounded subsets in (S§%(R¢))" into bounded subsets of C. Since
(82(R%))" is bornological,

9= (Wsf)(9) , (S2(RY) — C,

is continuous. Hence W, f € S%(RY) (S2(RY) is reflexive). Now we conclude that

Wfrof = Z fnanhn

neNg
This is exactly Hermite expansion of W, f; {fn0,}n € s°*. Thus, the mapping
f = Wﬁof’ (Sg(Rd))/ - Sg(Rd)a

is well defined and linear. Arguing similarly as before, one can prove that when f
varies in a bounded subset B of (S¢(R%))’, the set

{{fkor}rena| f € B} is bounded in s,
Thus,

{Ws,f| f € B} is bounded in S%(R%).
As (S¢(R%)) is bornological, the mapping

F e Waof, (Sa(RY)) — SH(RY),

is continuous. Observe that W5, f coincides with the Weyl transform of f when
f € S2(RY) (cf. (4.10)).
If 0; — 0 as j — oo, in G3%(R%), Theorem 3.4.1 implies that

2
{amj}nGNg — {Un}neNda J — 00

and since the latter is a (DF N)-space, the convergence also holds in s for some

a > 1. Thus, for each fixed f € (S¥(R%)),

{fngn,j}n 32_a> {fno-n}n

Hence,

Z JnOn,jhn w Z fnonhn,.

neNd neNd

Since we have obtained that W5, . — W5, in the topology of simple convergence in
L((S2(R?)), S¥(RY)), by the Banach-Steinhaus theorem it follows that the conver-
gence holds in the topology of precompact convergence. As (S¢(R%))" is a Montel
space, the convergence also holds in the strong topology of £((S2(R%))’, S%(RY)).

O
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Let o > 1/2. If o is a measurable function on R% such that

% € L*(RY})

for some n € N¢ then one easily verifies that o € (S(R%))". Since the canonical
inclusion G32(R%) — S(R%) is continuous and dense, (S(R%))’ is continuously
injected into (G32(R%))’, hence o € (G32(R%))".

Lemma 4.4.1. Let « > 1/2 and 0, n € N, be measurable functions on Ri such
that a,(p)/(1 + p)"/? € L*(RL), for alln € NZ and

Z ||an(,0)/(1 + p)”/QHLQ(Ri) APl < oo, for each A > 0.

neNg

Then ZneNg o, converges absolutely in (G32(R%)).
Furthemore, 6,(z,€) = 0,(2v(x,§)), for all n € N4, is measurable on R** and

an(z,8)
(1 + 2v(z, &))"/

€ L*(R*).

Moreover, ZneNg Fn(x,€) converges absolutely in (S&(R>*?)).

Proof. Firstly, we will prove that EneNg o, converges absolutely in (G32(R%))’.

Let B be bounded subset of G32(R%). For each f € B denote by a,; = (f, L,).
By Theorem 3.4.1, {{ay, s} eng| f € B} is bounded in s** and hence also bounded

in s2*¢ for some a > 1, i.e. there exists Cy > 0 such that
|an,f| < Coa "% for all f € B.

For f € B, n € NZ, we have

)l < X lougl [ lonolIEaloldr

kend

< Collon()/ X+ )" pague, 2o a Y <m) o Lellz e

keNg m<n

As in the first part of the proof of Proposition 3.3.1, by (3.11), there exist C;, A > 1
which depend on a but not on n € N such that

k|1 (2e) n m n| _an
5 a5 (Y ey < Co

keNg m<n

Hence, by the assumption on o, n € N&, we have
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ie. ZneNg o(p) converges absolutely in (G3%(R%))'.

Next we will prove that for each n € Ng, &, is measurable on R?*?. Firstly, we
will show the following:

Let vy : R* — R? be defined by vy (x,&) = (223 + 263, ..., 222 + 262). 1If
g:R% — C is measurable then f: R* — C, f = go vy, is also measurable.

For brevity in notation we denote by A\; and Aoy the Lebesgue measure on

R? and R*@, respectively. We will prove that if N C R% with A\y(N) = 0 then
Aoa(v7 (V) = 0. Observe that this implies the measurability of f since:

e Every measurable set is the union of a Borel set and a set of measure zero
and

e the preimage of every Borel set under v; is Borel set (since v; is continuous).

Let N C M, with A\g(V) = 0. Denote by N; = N N Ri and by Ny = N\Nj.
Obviously,

Naa (07 (RD\RY) ) = 0.

Thus vy *(V;) is measurable and has measure zero.

It remains to prove that Aog(v;'(N1)) = 0. Let € > 0 be arbitrary but fixed.
Since )\d(Nl) = 0, there exists an open set O C R%, such that N; C O and
Aa(O) < /7. There exist countable number of cubes

B([)(]) ) {pER’p <pl<pl()+7’j,l— 7~~-7d}7j€N

which are pairwise disjoint and
O = U B(p(J)
jeN
(see [35, p. 49]). Observe that
g/m" > X(0) =) Ma(B(pY),ry)) = rd
jEN jEN
and

d
o BD, ) = [T {2 < af + & < pPj2+15/2}

=1
Thus Agg(vy H(B(pW, 1)) = 1 d7?/27. Hence,

Aaa(v7H(0)) = rintj2t < e

jeN

Since £ > 0 is arbitrary, we conclude that v; ! (/N}) is measurable and it has measure
zero. Hence, the measurability of &,, follows.
Moreover,

30, €)1 + 200, )" [ 12 gy = 27 o 0)/ L 0?2 -
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Clearly, 6, € (S¥(R??))’ for each n € Nd.
To prove that ZneNg &, converges absolutely in (S2(R?*?))| let B be a bounded

subset of S¥(R??). As the latter space is the inductive limit of lim Si’f (R*%) with
A—o0

compact linking mappings, there exist C; A > 1 such that for all f € B

Hx”{ngDgf(x,§)HL2(R2d) < C Attt plomepogl® Yn,m, p,q € Ng.
Next, for f € B, we have

(G £)] < (3l €/ + 200 )| g | £ O+ 2002 )2 1o gy

do|n n/2||2 n! m ek
< 7 2l ||Un(p)/(1 +p) / HLQ(Ri) Z W HI § f(x’g)”L?(R?d)
m~+k+p=n
n o n 2
< Cr(6A4)" ! [lon(p) /(L + )| o
Hence, by the assumption in the lemma,
> sup (6, )] < o,
nENgfeB
ie. ZneNg &, absolutely converges in (S%(R??))’. O

Let 0, and 6, n € N&, be as in the previous lemma and

5(z,6) = Y Fulx,€) € (S3(RY))"

nGNg

The Weyl pseudo-differential operator W is a continuous mapping from S2(R¢)
into (S¢(R%))". In this case, we obtain improvement with the following result.

Theorem 4.4.2. Let a > 1/2. Let 0,(p) and G,(z,&) = 0,(2v(z,€)), n € N&, be
as i Lemma 4.4.1. Then

Ws : SY(R?Y) — S*(RY),

where

6(1,6) = ) Gal,€) € (SHRM)),

neNg

18 a continuous mapping and it extends to a continuous mapping
W5+ (Sa(RY)) — (Sa(RY)).
Nezt, assume that for each j €N, o5 € (G2 (RY)), n € N¢, be as in Lemma
4.4.1. Denote by oV) = ZneNg o) € (G32(RL)). If

o) () (EELY

with o as above, then Wy — Wi in the strong topology of L(S%(R?),S%(R?))
and L((S3(RY))', (S5(RT))").

a(n), as j — 00,
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Proof. Denote by o = ZneNg o, € (G3(RL)) (cf. Lemma 4.4.1). Let f,g €

S%(R%) and denote by

fk = <f, hk>, g = (g,hk> and S — (27T)d/2(—1)|k|2_d<(7, Ek)

Similarly as in the first part of the proof of Theorem 4.4.1, one obtains

(Waf)(g) = @)~ D" frgi(6, tma),

(m,k)€ENZd
where 1y, , = W (hy,, hi;) and the sum converges absolutely. Next,
60,0 0nal@ &) = 3 [ (2000, )bna(r, o
nENg R

By the same technique as in the proof of Theorem 4.4.1,

d v
/ on(20(2, ) k(. §)drdS = Comi | | / e ikl gp,
R r=17"T
Thus (7, ¥ k) = 0 for m # k. Moreover,

/de on(20(z, §))Vrp(z, §)dzd

2
= (27T>d/2(—1)"“'2d/ on(207 -, 207 Li(207, ... 2p3)e” " p*dp

d
R+

= (@2m)¥3(=D)M2Yq,, L}).

Thus,
(6(2,€), iz, ) = @m)*(=1)H27 U0, L}) = 5.

Hence, we obtain

(Waf)(g) = @) Y fuguss

keNd

and the series converges absolutely since { f.}rewa, {9k }rena € 52> (see Proposition
1.6.1) and {sk}pena € (@) (see Theorem 3.4.2). Observe that for each n €
NG, (Wsf)(hn) = fasn. Since {sp},ene € (s**) and {fu},ene € 5™, we have

{fnsn}nend € s% ie. Wsf € S¢(R?) (by Proposition 1.6.1). We conclude that

f=Wsf, SSRY) — S(RY),
is a well defined linear mapping. Moreover,

W&f = Z fnsnhn

nENg
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To prove the continuity let B be a bounded subset of S%(R?). As {sk}rene € (%),
the set
{{fasn}nena| f € B} is bounded in s

thus
{Wsf| f € B} is bounded in S%(R?).

As S¢(R?) is bornological,
f = W&fa Sz(Rd> — Sg(Rd)a
is continuous. By similar technique, one proves that

Waf =Y fasuha € (SS(R?)), for each f € (S5 (RY))'

nENg

and the mapping,
frWaf, (S3(RY)) — (Sa(RY))

1s continuous.

Let 0,0 € (G2(R2)), j € N, be as assumed in the theorem, with o) —
o in (G(R1)). In order to prove Ws; — W in the strong topology of
L(82(R?),82(R?)) (resp. in the strong topology of L((S2(R%))’, (S¥(R%)))) it
is enough to prove that for each f € S2(R?Y) (resp. for each f € (S2(R?))),
Winf — Wsf in SY(R?) (resp. in (S¥(R?))) since in this case the Banach-
Steinhaus theorem implies convergence in the topology of precompact convergence.
As SY(RY) (resp. (S%(R?))’) is Montel the convergence also holds in the strong
topology. Thus for the fixed f € S¥(RY) (resp. f € (S¥(R?))). Theorem 3.4.2
implies that

. (820()/
{5 beng = {snheny:
Then
j 52 . o
(st Yeemg = {isidueng, (resp. in ()

i.e.
S2(R?

Woo f 2L 1w, £, (vesp. in (S2(RY)).
]

Remark 4.4.1. Let 0,,, n € N}, be measurable functions on R such that ,,(p)/(1+
p)"/? € L*(R?), for all n € N¢ and for each A > 0,

Z o (p)/ (1 + P)n/QHLz(Ri) Alrlpen/? < o,

nENg

Then, by Lemma 4.4.1 EneNg o, converges absolutely in (G%(R%))’ to some o.
Moreover, the same result also states that

Gn(2,8) = 0,(227 + 263, ..., 23] + 267)
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is measurable on R* and Y &, converges absolutely in (Sz//;(RM))’ to some G.

The Weyl pseudodifferential operator with symbol & is well defined and contin-
ues mapping from S¥(R%) into S%(RY), it extends to a continuous mapping from
(S2(RY)) to (S2(R9))". Tt is given by

W&f = Z ka'khk, f = Z fkhk € (Sg(Rd)),, O = (27T)d/2(—1)|k|2_d<0'7 lk>
k k

and o = (2m)¥?(—1)*2-4(g,1,.) (see Theorem 4.4.2). By Theorem 3.6.2 each o
given as above originates from a unique even tempered ultradistribution by the
isomorphism ("3)7: (842 (RY)) — (G%(R?)Y.

a/2,even
4.5 Weyl pseudo-differential operator with ra-
dial symbols from S(R?) and its dual space
In this section, we prove, by the similar arguments as in Section 4.4, the continuity

of the Weyl pseudo-differential operators with radial symbols from S (Ri) and its
dual space on the Schwartz space and its dual space.

Theorem 4.5.1. Let o(p) € S(RYL) and denote by oo(p) = o(2p), p € RL. Let
5,00 € S(R?*?) be the functions defined in (4.6). Then

Ws, : (S(RY)) — S(R?)

extends to a continuous mapping. If f,g € (S(R?)) and

fe = (f, hw), gr = (9, hw) and o, = (27)d/2(—1)k2_d/ a(p)Li(p)dp,

d
RY

then
(Wauf)(g) = @0 3 figuon.

keNd

Moreover, if
oo;(n)x — S(R‘i)ao(n) asj — 0o

then W5, , — W, in the strong topology of L((S(R?))", S(RY)).

Proof. First we compute the Weyl transform W, of f € S(RY). Let g € S(R?).
Following (4.4) we obtain

Waul)g) = (2m)""260(W(£,9))
= 20" Y D g i) (f hy)o(W). (4.11)

keNg jeNd

Using (4.8) and (4.9) and passing to polar coordinate in the integral

i) = [ ool ) usale, e
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one easily obtains that

2T
¢] k ] k H / ]r_kr)a'rde

Thus, 60(1;%) = 0 when j # k. Moreover, denoting 1 = (1,...,1) € N4,

~ d 12
Go(Yrp) = (27r)2(—1)k2d/d o (201, 205) L (203, - 2p5)e” " ptdp
R+

= eofn' [ oWy = o
RS
By (4.11), with g = (g, hx) and fr = (f, hx), we obtain

(WUof Z 9 SOk (4-12)

keNg

Let now f,g € §'(R?). Define

(Wao£)(9) = Y fagnon-

nGNd

Observe that the series is absolutely convergent since {f,},ent: {gn}neng € ¢" and
{on}nena € 5 (0 € S(R%); cf. Theorem 2.2.1). Thus, if we fix f € S'(RY), the
mapping

g = (W50f>(g)7 S/(Rd) —C

is well defined linear mapping.

To prove that it is continuous let B be a bounded subset of &'(RY). As S(R?)
is barreled B is equicontinuous. Thus, the set {{gi},ena| 9 € B} is equicontinuous
subset of s'. We conclude that there exist r € N and C' > 0 such that

lgr| < C(Jk| +1)", Vk € N, Vg € B.

Hence,
sup [(Ws, £)(9)] < C D [ful(In +1)7]on] < o0,

€B
g nENg

i.e. Wjs,f maps bounded subsets in &'(RY) into bounded subsets of C. Since
S’(R9) is bornological,
9= Wsf)(9)

is continuous. Hence Wj,f € S(RY) (S(RY) is reflexive). Now we can easily
conclude that

W&of = Z fnanhn

neNg

Thus, the mapping
f = W&ofa Sl(Rd> — S<Rd)a
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is well defined and linear. Arguing similarly as before, one can prove that when f
varies in a bounded subset B of S’(R?) the set

{{/kok}rene| f € B} is a bounded subset of s.

Thus,
{Ws,f| f € B} is bounded subset of S(R%).

As 8'(R?) is bornological, the mapping
f = W&ofa S/(Rd> - S<Rd)7
is continuous. Observe that W;, f coincides with the Weyl transform of f when
f € SRY) (cf. (4.12)).
If o; = 0 as j — oo, in S(R%), Theorem 2.2.1 implies that
{Un,j}neNg = {Un}nENd as j — 00,

Thus for each fixed f € S'(R?),

Z fno'n,jhn LM) Z fno'nhm

neNgd neNgd

i.e. Ws,, — W5, in the topology of simple convergence in £(S'(R?%), S(R?)). Now,
the Banach-Steinhaus theorem implies that the convergence holds in the topology
of precompact convergence. Since S’(R?) is Montel, the convergence also holds in

the strong topology of £L(S'(R?), S(R?)). O

Theorem 4.5.2. Let 0 be a measurable function on Ri such that there exists
n € N¢ for which

% e LA(RY).
We have
5z, ) = o(20(x,€)) € (SR)).

Then
W5 : S(RY) — S(RY)

18 continuous mapping and it extends to a continuous mapping
(SRY)) — (SR)).

Let 07, j € N, be measurable functions on ]R‘fr such that for each j € N there
exists nY) € N¢ for which

n()
o5(0) /(1 + )" € L2(RL),
If o is a measurable function on ]Ri with the properties stated above and if

. SR
U(])(ﬁ) (S(RY))

then Wy — Ws in the strong topology of not only L£(S(R?),S(R%)) but also
L((SRY), (SR)).

a(n) as j — 0o,
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Proof. Let f,g € S(RY). Denote

fr ={f,hx), gx = (g, hx) and o} = (27T)d/2(—1)k2_d<a, L)

Following (4.4), we obtain

(Wowe f)(g) = (2m)"?6(W(f.9))
= 2m) Y Y g ) {(f h)a (W) (4.13)

keNg jeNd
where ;. = W(h;, hy). Next,
30) = (30,9, 65a(0.) = 3 27 [ ol €020l )sa(o. o
[s|<N

By the same technique as in the proof of Theorem 4.5.1 we have

2m
wjk Z CijH/ i(jr—Fkr)0 rde

[s|<N
Thus 6(¢p;x) = 0 for j # k. Moreover, denoting 1 = (1,...,1) € N,

G(Uryr) = (2m)¥?(—1)k2¢ / > 2% 20,207 ... 207)

Rd
+ [s|<N
xLi(2p%, .., 2p2)e " ptdp
= (27T)d/2(—1)k2_d(0, Ly) = 0%.

By (4.13), with gx = (g, hx), fx = (f, hx) we obtain

(Waf)g) = 2m) > gdio.

keNg

Since f,g € S(RY) it follows that {fi}yeng € 5 and {gx}reng € 5. As o € S'(RY),
applying Theorem 2.3.1 we obtain {O’k}kGNg € s'. This implies that the series is

absolutely convergent. If B is a bounded subset of S(R?) than
{{9k}trene| g € B} is bounded subset of s.

Thus,
{(W5f)(g)|g € B} is bounded subset of C.

Hence, the mapping
g (Wsf)(g), SRY) — C,

is continuous since S(R?) is bornological. Thus,

f=Wsf, SRY) = S'(RY),
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is a well defined linear mapping. Observe that for each n € Nd, (W5 f)(h,) = 0y fn.
Since {on}pena € 8" and {fy}nene € s, we have {0 fn}pena € 5,16 Waf € S(RY).
We conclude that

f=Wsf, S(RY) — S(RY),

is well defined linear map. Moreover,

Waf =Y onfohn.

neNg

To prove that it is continuous let B be a bounded subset of S(R%). As {0} }rend €
s’, the set
{{onfn}nene| f € B} is bounded in s.

Thus,
{Wsf| f € B} is bounded in S(R%).
As S(R?) is bornological,

f=Wsf, SRY) — S(RY),
is continuous. By similar technique, one proves that

Wsf = Z fausnhn € S'(RY), for each f € S'(RY)

nGNg

and the mapping,
f=Wsf, SRY) = S'RY,

is continuous.

Let 0,09 € S'(R%), j € N, be as in the assumption in the Theorem, with
o) = o in S'(R%). In order to prove Wy — Wj in the strong topology of
L(S(R?),S(R?)) (resp. L(S'(RY),S'(R%))) it is enough to prove that for each f €
S(RY) (resp. f € S'(RY)), Wi f — Wsf in S(R?) (resp. W f € S'(R?)) since
in this case the Banach-Steinhaus theorem implies convergence in the topology of
precompact convergence. As S(R?) (resp. S'(R%)) is Montel the convergence also
holds in the strong topology. Thus fix f € S(RY) (resp. f € S'(R?)). Theorem
2.3.1 implies that

{Ul(qj)}keNg - {on} reng-
But then
{09 fibeng = {onfibreng: (resp. in s')
le.
Wi f SE, W f (resp. in S(RY)).
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Appendix A

Topics from Functional Analysis

A.1 Nuclear Mappings

Note that in each linear space E there is a one to one relation between seminorms
and central subsubsets (absorbing absolutely convex subset A of a linear space E
is central if z € A whenever ax € A for all « € C with |a| < 1). For each such
set A, the equation

pa(x) =inf{o > 0: 2 € pA} forze E
determines a semi-norm p4 for which
A={z € E:py(z) <1}
Conversely, every semi-norm p can be obtained in this way from the central subset
A={zx e E:px) <1}

We shall consider nuclear mappings from a normed space E into a normed space
F.

Definition A.1.1. ([30, Definition 3.1.1, p.49]) Let E and F be two arbitrary
normed spaces with closed unit balls U and V. A continuous linear mapping
T : E — F is called nuclear if there are continuous linear forms a, € E’ and
elements y,, € F with

S pue(an)py () < o0
such that 7" has the form

T = Z(x, an)Yn, forz € E.

n

For each nuclear mapping 7" we set

v(T) = inf{z pue(@n)pv (Yn) },

85
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where the infimum is taken over all possible representations of 7. If F' is con-
tinuously injected into a larger normed space G it is possible that the continuous
linear mapping 7' : £ — F' is nuclear as a mapping from FE into G but not as a
mapping from FE into F. The detailed investigation of these matters led to the
concept of a quasinuclear mapping.

Definition A.1.2. ([30, Definition 3.2.3, p.56]) If E and F are two arbitary
normed spaces with closed unit balls U and V', then we designate a continuous
linear mapping 7' from E into F' as quasinuclear if there is a sequence of linear

forms a,, € E’ with
Zon(an) < 0

such that
py(Tz) < Z |(x,a,)]| forz € E.

For each quasinuclear mapping 7" we set
mo(T) = nf{>_ pue(an)},

where the infimum is taken over all sequences of linear forms a, which have the
stated property.

Proposition A.1.1. (/30, Proposition 3.2.7, p.59]) A continuous linear mapping
T from a normed space E into a normed space F' is quasinuclear if and only if

there is a normed space G containing F' such that T is nuclear as a mapping from
E into G.

For E, I and G three normed spaces we have the following theorem:

Theorem A.1.1. [30, Proposition 3.3.2, p.62]) Let T : E — F and S : F — G
be two quasinuclear mappings. Then the product ST is nuclear and

V(ST) S 7T0(S)7T0(T).

We proceed to define the nuclear space.
Let X, be the completion of the normed space E/Ker p (the latter is a normed
space of we put on it the quotient mod Ker p of the seminorm p).

Definition A.1.3. (Nuclear space) A locally convex Hausdorff topological vector
space X is called nuclear if to every continuous seminorm p on X there is another
continuous seminorm on X, ¢ > p, such that the canonical mapping X, — X, is
nuclear.

A.2 The Open Mapping Theorem

Suppose f maps S into T where S and T are topological spaces. We say that f
is open at a point p € S if f(V) contains a neighborhood of f(p) whenever V' is
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a neighborhood of p. We say that f is open if f(U) is open in T" whenever U is
open in S.

It is clear that f is open if and only if f is open at every point in S. Because
of the invariance of vector topologies, it follows that a linear mapping of one to-
pological vector space into another is open if and only if it is open at the origin.

A continuous linear mapping f of S onto T is called a topological homo-
morphism if it is open. Note that if f is also one-to-one f is called a topological
monomorphism. f is then a homeomorphism of S and f(S). If f(S) =T as well,
f is called a topological isomorphism of S and T (see [22, p.91]).

Now we state the open mapping theorem:

Theorem A.2.1. (/35, Theorem 2.11, p.47]) Suppose
(a) X is an (F)-space,
(b) Y is a topological vector space,

(c) A: X =Y is continuous and linear and
(d) A(X) is of the second category in'Y .
Then
(1) AX) =Y,
(i) A is an open mapping and
(i1i) Y is an (F)-space.
Corollary A.2.1. ([35, Corollary 2.12, p.48])
(i) If A is a continuous linear mapping of an (F)-space X onto an (F)-space
Y, then A is open.

(ii) If A satisfies (i) and is one-to-one, then A=' 1Y — X is continuous.

A.3 The closed-graph theorem
If X and Y are sets and f maps X into Y, the graph of f is the set of all points
(x, f(x)) in the cartesian product X x Y.

Proposition A.3.1. ([35, Proposition 2.14, p.49]) If X is a topological space and
if Y is a Hausdorff space, and f : X — Y 1is continuous, then the graph G of f s
closed.

Now we state the closed graph theorem:
Theorem A.3.1. (/35, Theorem 2.15, p.50]) Suppose
(a) X andY are (F)-spaces,
(b) A: X =Y is linear,
(¢) G={(x,Az) :x € X} is closed in X x Y.

Then A is continuous.
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A.4 Topology of bounded convergence

Let E and F be two locally convex topological vector spaces. By L(E,F) we
denote the collection of all continuous linear mappings from E into F.

We are interested in the family of all bounded sets of E, which leads to the
topology of bounded convergence; equipped with it, £L(E, F') will be denoted by
Ly(E, F). Also, L,(E,C) = E}, strong dual of E.

Corollary A.4.1. ([39, Corollary 1, p. 344]) Let E be a locally convex Hausdorff
space such that a linear mapping of E into a locally convex space which is bounded
on every bounded set is continuous. Then for all complete locally convex Hausdorff
spaces F', Ly(E, F) is complete. In particular, E; is complete.

A.5 Tensor product

In this chapter we review the topological tensor products. For more details on
this subject we refer to [39].
We begin with the definition of the tensor product of two vector spaces.

Definition A.5.1. (Algebraic tensor product) Let E and F' be two vector spaces
over K = {R, C}. We form the set A(E x F') of all formal finite linear combinations

> (@ y)ouy

(z,y)EEXF

of elements of E x F', with coefficients in K. A(E x F') becomes a vector space
over K when we put

Z ({L‘, y>o~/x,y>6 = Z (:L‘7 y)ax,yﬂ
(z,y)EEXF (z,y)EEXF

and

Yo @yawyt+ D @y = Y, (@)t Buy).

(z,y)eEXF (z,y)eExF (z,y)eEXF

The zero element is obtained when all the coefficients o, are put to be equal to
0.
We now form the linear span Ay in A(F x F') of all elements of the form

< Z Tili Z ykﬁk) - Z Z(%, Yr) i B
=1 k=1 i=1 k=1

The quotient space A/Aq is called the tensor product, £ ® F' of E and F.

A mapping B(z,y) from E x F into a vector space H which is linear in both
variables i.e. is called a bilinear mapping from E x F'into H. Thus, for all x; € £

and yi € F,
B(OY @i, Y ykB) = > Blai, yi)aibi.
% k % k
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If H is the field of coefficients, we speak of bilinear forms or bilinear functionals.
The set of all bilinear mappings from E'x F' into H form a vector space B(Ex F, H).
We denote the space of all bilinear forms on £ x F' by B(E x F').

We can topologize and form the completion of a tensor product £ ® F' either
by relying directly on the seminorms on £ and F' or by embedding £ ® F' in some
space related to £ and F' in which a "natural” topology already exists. The first
approach leads to the so-called projective or w-topology. The second approach
leads to a variety of topologies, the most important is the e-topology. We proceed
to give the definition of the firs main topology on tensor products.

Definition A.5.2. (Projective tensor product) Let X ® Y be the algebraic tensor
product of locally convex spaces X and Y. The projective tensor topology or the
m-topology of X ® Y is the strongest topology for which the bilinear mapping

(r,y) —»zrRyY): X XY > XQY

is continuous. This topological space is denoted by X ®, Y and its completion by
X®,Y.

The definition on the e-topology is based on the relationship between tensor
products and bilinear functionals.

Proposition A.5.1. ([39, Proposition 42.4., p.432]) Let X,Y be locally convex
spaces over C. The algebraic tensor product X ® Y 1is isomorphic to the space
B(X',Y") of continuous bilinear functionals X' x Y' — C, where X" and Y’ are
the dual spaces with weak topologies.

We introduce the notion of equicontinuous sets of functions:

Definition A.5.3. (Equicontinuity in vector space) Let X be a topological space
and V a topological vector space. A familly F of mappings f : X — V is called
equicontinuous at p € X if for every neighborhood W C V of f(p) there exists a
neighborhood U C X of p such that f(z) € W whenever f € F and z € U.

Now we state the definition of the second main topology on tensor products.

Definition A.5.4. (Injective tensor product) Let X, Y be locally convex spaces
over C. Let B(X’,Y") be the space of those bilinear functionals X’ x Y’ — C that
are continuous separately in each variable. Endow B(X',Y”) with the topology 7
of uniform convergence on the products of an equicontinuous subset of X’ and an
equicontinuous subset of Y”. Interpreting X ® Y ¢ B(X',Y’ ) as in Proposition
A.5.1, let the injective tensor topology or e-topology be the restriction of 7 to
X ® Y. This topological space is denoted by X ®. Y and its completion by
X®.Y.

The introduction of nuclear spaces is justified by the following theorem (for
the definition of the nuclear spaces see Appendix A.1):

Theorem A.5.1. ([39, Theorem 50.1. (f), p.511]) X is nuclear if and only if for
every locally convexr Hausdorff topological vector space Y, the canonical mapping
of X®.Y into X®.Y is an isomorphism onto.



90

Note that the previous theorem means that
X, Y =X®.Y,
where the equality extends to the topologies.

Proposition A.5.2. ([39, Proposition 50.1. (50.9), p.514]) If X and Y are two
nuclear spaces, XQY is nuclear.

We close this section with the results about Fréchet spaces.

Proposition A.5.3. (/39, Proposition 50.6., p.523]) A Fréchet space X is nuclear
if and only if its strong dual is nuclear.

Proposition A.5.4. (/39, Proposition 50.7., p.524]) Let E and F be two Fréchet
spaces. If E is nuclear we have the canonical isomorphism

E'QF = B(E,F) = (EQF).

A.6 Barreled and Montel spaces

Among the locally convex topologies on F; which can be defined in terms of the
dual pair (Es, E) there is a finest one, namely the topology of uniform convergence
on all the weakly bounded subsets of Fy. This is called the strong topology Z,(E»)
on Fy. We now give the characterization of the strong topology.

A subset T of a locally convex space T'[Z] is called a barrel if T" has the following
properties:

(i) T is absorbent (A subset M of E is said to be absorbent if a suitable multiple
px, p >0, of each element = of F lies in M);

(ii) T is closed;
(iii) T is absolutely convex.

A locally convex space is said to be barreled if the barrels form a base of Z-
neighborhoods of o (see [22, p. 257]). This is equivalent to: the barreled spaces
E[Z] are those locally convex spaces whose topology Z coincides with the strong
topology Z,(E') (see [22, §21, 2.(2), p.257]).

Corollary A.6.1. ([22, 8§21, 5.(3), p.263]) All (F')-spaces are barreled.
The importance of barreled spaces stems mainly from the following result:

Theorem A.6.1. ([39, Theorem 33.1.,p.347]) Let E be barreled and F a locally
convex space. The following properties of a subset H of the space L(E,F) of
continuous linear mappings of E into F' are equivalent:

(i) H is bounded for the topology of pointwise convergence;

(i1) H is bounded for the topology of bounded convergence;
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(i) H is equicontinuous.

Now, we define a filter F is a family of subsets in E, submitted to three
conditions:

(F1) The empty set should not belong to the family F.

(Fy) The intersection of any two sets, belonging to the family, also belongs to the
family F.

(F3) Any set, which contains the set belonging to F, should also belong to F.
The theorem which follows is often referred to as the Banach-Steinhaus theorem.

Theorem A.6.2. ([39, p. 348]) Let E be a barreled space, F a locally convex
Hausdorff space and F a filter on L(E,F) which converges pointwise in E to a
linear map ug of E into F. Suppose that F has either one of the following two
properties:

(i) There is a set H, belonging to F,which is bounded for the topology of point-
wise convergence.

(i1) F has a countable basis.

The ug is a continuous linear mapping of E into F' and F converges to ug uniformly
on every compact subset of E.

There is a class of barreled spaces which is of particular interest. A barreled
space E[Z] is called a Montel space or (M)-space if every bounded subset of F is
relatively compact (see [22, p. 369]). It follows from the definition that:

Proposition A.6.1. ([22, §27, 2.(1), p.369]) Every M-space is reflexive.
Moreover, the strong and weak topologies on the dual of an (M )-space coincide.

Proposition A.6.2. (22, §27, 2.(2), p.369]) The strong dual of an M -space is

again an M -space.

Thus, the weak and the strong topologies coincide on the bounded subsets of
an M-space. In particular, we have

Proposition A.6.3. Every weakly convergent sequence in an M-space is also
strongly convergent, to the same limit.

We give the continuity Theorem for bilinear mappings on barreled (DF)-
spaces.

Theorem A.6.3. (/23, §40, 2.(11)]) Let E, F be barreled (DF)-spaces, G locally
convez. Then every B € B(E x F,G) is continuous.
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A.7 Bornological and ultrabornological spaces

A linear functional on a normed space is continuous if it is bounded on the unite
ball. This can also be expressed by saying that every linear functional on a normed
space which is bounden on the bounded sets is continuous.

Expressed in this form,this property need no longer hold for arbitrary locally
convex spaces. If we say that a linear functional u € E* is locally bounden when
its values remain bounded on any bounden subset of F, then the problem is to
characterize those locally convex spaces for which every locally bounded linear
functional is continuous. For this we can always suppose that the topology Z is
the Mackey topology (i.e. the toplogy F[Zy(E")]. That is the topology of uniform
convergence on all absolutely convex weakly compact subsets of £’ is a locally
convex topology on F which is finer then the original topology (see [22, p. 260])).

In order to give the answer to this question we need the following definition:
A locally convex space E[Z] is said to be bornological if every absolute convex set
M which absorbs all the bounded sets of E[Z] is a Z-neighborhood of o (see [22,
p. 379]).

Now, the problem stated at the beginning of this section is answered by the
following proposition.

Proposition A.7.1. (/22, §28, 1.(3), p.379]) A locally convex space E[Z] has the
property that every locally bounded linear functional on E is continuous if and only
if E[Zi,(E")] is bornological.

The structure of bornological spaces is given by:

Proposition A.7.2. ([22, §28, 2.(2), p.381]) Every bornological space is the loc-
ally convex hull E[Z] =) 5 Ep of normed spaces Ep. If, further, E[Z] is sequen-
tially complete, E[Z] is the locally convex hull of B-spaces.

Next, we state the results which generalizes previous proposition.

Theorem A.7.1. ([22, §28, 2.(3), p.381]) A locally convez space E[Z] is borno-
logical if and only if every locally bounded map from E[Z] into any locally convex
space F[Z'] is continuous.

Criterion for the continuity of linear mappings from bornological spaces can
be expressed in another form which is particular convinient for applications.

Theorem A.7.2. ([22, 8§28, 3.(4), p-383]) A linear mapping A from a bornological
space into a locally convex space is continuous if and only if it is sequentially
continuous and if and only if A is locally bounded.

The class of bornological space is stable under various operations.

Proposition A.7.3. ([22, §28, 4.(1), p.383]) Every locally convex hull of borno-
logical spaces is bornological.

Proposition A.7.4. (22, §28, 4.(4), p.384]) The topological product of at most
countably many bornological space is again bornological.
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Since every metrizable locally convex space is bornological, we otain a very
extensive class of bornological spaces by repeating application of Proposition A.7.3
and Proposition A.7.4. For example, all (LF')-spaces i.e. a locally convex spaces
that can be represented as the topological inductive limit of a properly increasing
sequences F1[T,] C Ey[Iy] C --- of (F')-spaces, belong to this class.

If a vector space F is the linear span of certain linear subspaces E,, we write
E =" E,. Of particular interest for us is the case where each E, is given as a
linear image A, (F,) of a vector space F,. We then write £ =) A,(F,).

A special case of such a linear span is the direct sum F = @, F,.

If the F, are locally convex topological vector space F,[Z,], we can try to
introduce a locally convex topology on the linear span E = ) A,(F,). By
analogy with the spacial case of the locally convex direct sum, the finest locally
convex topology Z for which all the A, are continuous mappings from F|, into £
suggests itself. This topology Z need not however be Hausdorff. But if this is the
case £ =) An(FalZ,]) is called the locally convex hull of the A,(F,[Z,]) and Z
is called the hull topology on E (see [22, p. 215]).

A locally convex topological vector space E is called ultrabornological if it can
be represented as the locally convex hull £ = )" A,(FE,) of (B)-spaces E,. E
always has a representation of the simpler form E = )  F,, where the F, are again
(B)-spaces. By Proposition A.7.3 every ultrabornological space is bornological.
Conversely, every sequentially complete bornological space is ultrabornological by
Proposition A.7.2 (see [23, p. 43]).

We have the following theorem

Theorem A.7.3. (23, §34, 8.(6), p.44]) Every closed linear mapping of an ul-
trabornological space into an LF'-space is continuous.

Every continuous linear mapping of an LF-space onto an ultrabornological
space is a homomorphism.

A.8 De Wilde’s theory

Theorem A.7.3 should be true for a much larger class of spaces than the class
of (LF)-spaces. Let E be the class of ultrabornological spaces, a subclass of the
class of barreled spaces, and we are looking for spaces F' such that the closed-graph
theorem for mapping from any FE into F' is true. We give here an exposition of De
Wilde’s approach (see [23, p. 53]).

We start with the fundamental notion of a web in a locally convex space E.
Let W = {C,,...n,} be a class of subsets C,,, . ,, of E, where k and n, ..., nj, run
through all the natural numbers. W is called the web if it satisfies the relationships

E = G Cn, and Cy, o, = G (G

ni=1 ni=1

for £k > 1 and all nq,...,ng_1. If all the sets of a web are closed or absolutely
convex, we say that the web is closed resp. absolutely convex.
A W is a C-web if the following condition is satisfied: for every fixed sequence
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ng, k = 1,2, ..., there exists a sequence of positive numbers p; such that for all A,
0 <X\ < ppand all 2, € C,, 5, the series Zzozl ApZp converges in E.

A locally convex topological vector space E[Z] in which there exists a C-web
will be said to be a webbed space.

Now, let F and F be locally convex; a linear mapping A of E into F' is called
sequentially closed if its graph G/(A) is sequentially closed in £ x F' (A set E C X
is said to be sequentially closed if for every sequence {z;}°, of elements of E and
every € X such that {z;}°, converges to z in X we have that x € ). In view
of applications it is certainly important to have the closed-graph theorem in the
stronger form that A is continuous if it is only sequentially closed. We obtain De
Wilde’s closed-graph theorem for ultrabornological spaces:

Theorem A.8.1. ([23, 8§35, 2.(2), p. 57]) A sequentally closed linear mapping of
an ultrabornological space E into a webbed space F' is continuous.

The classes of webbed spaces are stable under:

Proposition A.8.1. (/23, §35, 4.(8), p. 63]) The topological inductive limit
E[I] = lim E,[Z,] of a sequence webbed spaces E,[L,] is of the same type.

n—o0

The question whether the strong dual of a webbed space is again webbed seems
to be open. But there are some results in this direction.

Proposition A.8.2. ([23, §35, 4.(11), p. 64]) The strong dual of a metrizable
space E is strictly webbed.

We conclude this section with some remark on the hereditary property of ul-
trabornological spaces.

Proposition A.8.3. (/23, §35, 7.(7), p. 72]) The locally convexr hull E[Z] =
Yo Aa(EulZy]) of ultrabornological spaces E,[L,] ta an ultrabornological spaces.



Appendix B

Komatsu’s approach to
ultradistributions

We follow H. Komatsu (see [21]).

Let {M,},en, be a sequence of positive numbers. An infinitely diferentiable
function f on an open set 2 in R? is called an ultradifferentiable function of class
M, if on each compact set K in (2 its derivatives are estimated in the form

1D fllewry < CRI My, o =0,1,... .

We call f an ultradifferentiable function of class { M, } if the above inequality holds
for some h > 0.
We impose the following conditions on M,

(M.1) (logarithmic convexity)

M2 < M, My, p €N,

(M.2) (stability under ultradifferential operators) There are constants A and H

such that
M, < AH? min M,M,_,, p=0,1,....

0<¢<p

(M.3) (strong non-quasi-analyticity) There is a constant A such that

[e.e]

M, M,

My

< Ap

,p=1,2....
g=p+1 1

Some results remain valid when (M) and (Mj) are replaced by the following
weaker conditions:

(M.2)" (stability under differential operators) There are constants A and H such
that

My < AHPM,, p=0,1,....
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(M.3)" (non-quasi-analyticity)

00 A4é_1
> A, <oo, p=1,2,....

p=1
Remark B.0.1. Let the sequence { M, },en, be such that satisfies (M.1) and (M.2)".
Let Sy4 (R?) be defined by
Syl a(RY) = {f € C(RY) : a™ D" f(x)|| o < CA™H M, M,, ¥m,n € Ng},
for some positive constant C', where A = (A, ..., Ay) > 0.
We define the Gelfand-Shilov space Sﬁf (R%) as an inductive limit of the spaces
S]\A//[[ﬁﬁ(Rd) with respect to A:

M, . M,,A
SMp (Rd) = lln SMP,A(Rd)'
A—o0

The corresponding dual space of S,,”(R?) is the space of ultradistributions of
Roumier type:

M,
P

(Sary (B)' = lim Sy (RY).
Next, notice that the condition (M.1) is equivalent to the assumption that the
sequence
P
M,y
increases monotonically. Furthermore, if the sequence m, = M,/M, 1, p € N,
tends to infinite, then we define the associated function of M, as (see [21, (0.14,

p.29)]):

m, = , pEN,

pA4b

M(t) = sup lnt

p€ENp p

, t€(0,00).

It is a monotonically increasing continuous function which vanishes for sufficiently
small £ > 0 and increases more rapidly than Int? for any p as t — oc.
In this thesis, we considered only the Gevrey sequence

M, = {p!”“}pen,, with @ > 1 and p € Np.

Note that the Gevrey sequence satisfies the above conditions. By M(-) we denote
the associated function of {p!®},en,-
We call an entire function P : C* — C,

P(z) = Z 2",
nGNg
an ultrapolynomial of class {p!®} if for every h > 0 there exists C' > 0 such that

hlnl

|nl gC‘n“a.

Next, we state a sufficient and necessary conditions for existence of an ultrapoly-
nomial of class {p!*}.
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Proposition B.0.1. (/21, Proposition 4.5, p.58]) Suppose that M, satisfies (M.1).
Then the following are equivalent conditions for entire functions:

P(z) = Z [

neNg
(i) For every constant h > 0 there exists C' > 0 such that

|P(2)] < CeMPED vy, e

(i) For every constant h > 0 there exists C' > 0 such that

hlnl
nl[*

len| < C

Definition B.0.1. (|21, Definition 3.11, p.53]) A continuous increasing function
e(t) on [0, 00) which satisfies

t
£(0) =0 and ?%O, ast — 0o

is called a subordinate function.

Lemma B.0.1. (/21, Lemma 3.12], p.54) Suppose that M, satisfies (M.1) and
that £(t) is a subordinate function. Then there is a sequence N, of positive numbers
which satisfies (M.1) and the following properties:

N(t) > M(e(t)), 0 <t < oo

and

M,N,_
@:”—”1%0, asp — oo.
Ny Mplep

In particular, we have M, < N, so that there is a subordinate function €'(t) such
that
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Appendix C

Sobolev embedding theorem

Definition C.0.1. ([2, Definition 4.9, p. 83]) Q satisfies the strong Lipschitz
condition if there exist positive numbers § and M, a locally finite open cover {U,}
of bdry © (bdry stands for boundary) and for each j a real-valued function f; of
n — 1 variables, such that the following condition hold

(i) For some finite R, every collection of R + 1 of the sets U; has empty inter-
section.

(ii) For every pair of points z,y € {25 such that |x — y| < 4, there exists j such
that
(z,y) € V; = {z € U; : dist(z, bdry U;) > d}.

(iii) Each function f; satisfies a Lipschitz condition with constant M: that is, if
E=(&,...,& 1) and p=(p1,...,pn1) are in R" then

1f(€) = f(p)| < M| —pl.

(iv) For some Cartesian coordinate system (1, ..., () in U;, QN U; is repres-
ented by the inequality

G < fi(Gay ooy Gnat)-

If © is bounded, the rather complicated set of conditions above reduce to the
simple condition that €2 should have a locally Lipschitz boundary, that is, that each
point x on the boundary of (2 should have a neighbourhood U, whose intersection
with bdry €2 should be the graph of a Lipschitz continuous function.

The Sobolev embedding theorem asserts the existence of embedding of Sobolev
spaces

WmP(Q) ={ue LP(Q): Du e LP(Q)for 0 < |a| <m}, meN, 1 <p<oo
into Banach spaces of following types:

(i) C%(Q), the space of function having bounded, continuous derivatives up to
order j on €2 normed by

o) = D~ :
||UHCJB(Q) oglﬁ}éj ilelg| u(x)|
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(ii) C79(Q), the closed subspace of C%(Q) consisting of function having bounded,

uniformly continuous derivatives up to order j on € with the same norm as
CL(9).

Theorem C.0.1. (/2, Theorem 4.12, p. 85]) Let Q be a domain in R"™ and for
1 <k <mn, let Q be the intersection of Q with a plain of dimension k in R™ (if
k =mn, then Qp = Q). Let 7 > 0 and m > 1 be integers and let 1 < p < oo.
Suppose ) satisfies the strong local Lipschitz condition. Then the target space
CL(Q) of the embedding

Witme(Q) < C4(Q)

can be replaced with the smaller space C7(Q) and the embedding can be further
refined as follows:
If mp>n > (m—1)p, then

WItmP(Q) s C9NQ) for 0< A <m— (n/p),
and if n = (m — 1)p, then
WItme(Q) < CONQ)  for0 < A < 1. (C1)

Also, if p =1 then (C.1) holds for A =1 as well.
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xoBuM nyaiauMa. Ha oBaj mHaumn kiraca BejnoBux nceyno-andepeHnyjaranx
omepaTopa je HNpOUmIMpEHa Ha paaujajiHe cuMOOoJie KOju MMajy €KCIOHEH-
[I1jaJTHU U CyO-€KCIIOHEHNINjaJH PacT. paTe.
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Iarym npuxBaTama Teme on crpane HH Beha: 23.12.2015
11

IaTym onbpane:

11O

YnanoBu KOMUCH]€:

KO
[Ipencenuuk:
Ynam:

Yinan:



