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Abstract

Slow growing oomycete isolates with morphological resemblance to Phytophthora were

obtained from forest streams during routine monitoring for the EU quarantine forest patho-

gen Phytophthora ramorum in Ireland and Northern Ireland. Internal Transcribed Spacer

(ITS) sequence analysis indicated that they belonged to two previously unknown species of

Nothophytophthora, a recently erected sister genus of Phytophthora. Morphological and

temperature-growth studies were carried out to characterise both new species. In addition,

Bayesian and Maximum-Likelihood analyses of nuclear 5-loci and mitochondrial 3-loci data-

sets were performed to resolve the phylogenetic positions of the two new species. Both spe-

cies were sterile, formed chlamydospores and partially caducous nonpapillate sporangia,

and showed slower growth than any of the six known Nothophytophthora species. In all phy-

logenetic analyses both species formed distinct, strongly supported clades, closely related

to N. chlamydospora and N. valdiviana from Chile. Based on their unique combination of

morphological and physiological characters and their distinct phylogenetic positions the two

new species are described as Nothophytophthora irlandica sp. nov. and N. lirii sp. nov. Their

potential lifestyle and geographic origin are discussed.

Introduction

Nothophytophthora is a monophyletic sister genus of Phytophthora, and was erected in 2017 to

accommodate several slow growing previously unknown oomycete species recovered from

surveys of rhizosphere soil and streams in forest habitats in Europe, Asia and South America

[1–3]. The main features differentiating Nothophytophthora from other closely related oomy-

cete genera are the presence of a conspicuous, opaque plug inside the sporangiophore close to
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the base of most mature sporangia in all known Nothophytophthora species and intraspecific

co-occurrence of caducity and non-papillate sporangia with internal nested and extended pro-

liferation in several Nothophytophthora species. Jung et al. [1] described six species within the

genus Nothophytophthora. Isolates of other potentially novel Nothophytophthora taxa have

been isolated by several research groups during the last decade [4–7].

Ireland has a heavily modified landscape, with over 60% of the land cover devoted to agri-

cultural grassland [8]. The natural vegetation of the island of Ireland would consist mostly of

temperate deciduous forests [9], although at present just 11% of the land area is forested [10].

Consequently, the majority of research in plant pathology in Ireland has been focussed on agri-

cultural pathogens. The diversity of oomycetes in natural and semi-natural habitats on the

island of Ireland, comprising the Republic of Ireland and the UK country Northern Ireland,

has not been well studied. O’Hanlon et al. [11] presented evidence for the presence of 27 spe-

cies of Phytophthora, and speculated that at least a further 11 species probably remained to be

found based on species records from the UK. Surveys of forests, horticultural premises, and

public horticultural gardens in the past five years have produced first records of eight Phy-
tophthora species and several other oomycete species previously unrecorded in Ireland [12,13].

In recent surveys of Irish and Northern Irish habitats for the EU regulated forest pathogen

Phytophthora ramorum, collection and testing of Rhododendron leaves from wild plants and

from water baits in streams revealed several oomycete isolates which morphologically resem-

bled Phytophthora [12–14]. Preliminary ITS sequence analysis indicated that these slow grow-

ing isolates belonged to two previously unknown species of Nothophytophthora. In this study,

morphological and physiological characteristics were used in combination with multigene

phylogenetic analyses to characterise the two new Nothophytophthora taxa, compare them

with the known species of Nothophytophthora, and officially describe them as Nothophy-
tophthora irlandica sp. nov. and Nothophytophthora lirii sp. nov.

Material and methods

Ethics statement

This study was performed within the frame of the annual surveys of Irish and Northern Irish

habitats for the EU quarantine forest pathogen P. ramorum. The surveys were funded by, and

had oversight from, the National Plant Protection Organisations of both jurisdictions. No spe-

cific permissions were required. Our field sampling did not involve endangered or protected

species.

Isolate collection and maintenance

Baiting was performed in two and one streams in Ireland and Northern Ireland, respectively,

(Fig 1) using young leaves of Rhododendron ponticum or Rhododendron caucasicum × ponti-
cum ‘Cunningham’s White’ as baits in mesh sacs floating on the water [12,13]. The baiting in

the Ow stream in Ireland took place between early 2014 and late 2015, with a total of 10 baits

being tested during that period. The baiting in the Shimna stream in Northern Ireland took

place between mid-2017 and early 2018, with a total of 7 baits being tested. In addition,

attached leaves with lesions of plants of R. ponticum near the Owenashad and Shimna streams

were collected on each occasion and tested. Furthermore, naturally fallen necrotic leaves of R.

ponticum and other hosts (e.g. Fagus sylvatica, Fraxinus excelsior, Quercus petraea, Corlyus
avellana) floating in two streams in Ireland and one stream in Northern Ireland were also sam-

pled [3]. Collections in the Owenashad stream in Ireland were conducted in March and

December 2014; in August 2015; in July 2017; and in March, June, July and August 2018. Col-

lections in the Shimna stream in Northern Ireland happened in February, April, June, July,
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August and October 2017. In July 2015 a single collection of floating detached R. ponticum
leaves was made from the Ara stream in Ireland. As all of the sampling described above was

originally for the purpose of detecting a regulated organism (i.e. P. ramorum), no effort was

made to record the number of leaves tested. However, lesions from several hundred leaves

were plated during this research.

Fig 1. Forest streams in Ireland from which Nothophytophthora spp. were isolated. a–c. Owenashad River in a

temperate mixed coniferous and deciduous forest in County Waterford; d–g. Ow River in County Wickford; d.

riparian gallery of Rhododendron ponticum and planted conifer forest on the slopes; e. riparian R. ponticum; f. riparian

mixed stand of R. ponticum and broadleaved trees; g. naturally fallen, partly necrotic leaves floating in the Ow River; h.

small ditch which flows as tributary into the Ow River.

https://doi.org/10.1371/journal.pone.0250527.g001
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Isolations from necrotic areas of baiting leaves and naturally fallen leaves were performed

using selective P5ARP agar (cornmeal agar with antibiotics; [15]). For all isolates, single hyphal

tip cultures were produced under the stereomicroscope from the margins of fresh cultures on

V8-juice agar (V8A; 16 g agar, 3 g CaCO3, 100 ml Campbell’s V8 juice, 900 ml distilled water).

Stock cultures were maintained on grated carrot agar (CA; 16 g agar, 3 g CaCO3, 200 g grated

carrots, 1000 ml distilled water; [16,17]) at 10˚C in the dark. All isolates of the two new Notho-
phytophthora spp. are preserved in the culture collections maintained at the Agri-Food and

Biosciences Institute, Belfast, Northern Ireland, and the culture collection maintained at Men-

del University in Brno, Czech Republic. Ex-type and additional cultures were deposited in the

CBS culture collection at the Westerdijk Fungal Biodiversity Institute (previously Centraalbur-

eau voor Schimmelcultures CBS; Utrecht, The Netherlands). Details of all isolates used in the

phylogenetic, morphological and temperature-growth studies are given in Table 1.

GenBank numbers for sequences obtained in the present study are printed in italics; ex-

type isolates are printed in bold-type; t.s., this study;–, not available.

DNA isolation, amplification and sequencing

For all Nothophytophthora isolates obtained in this study and for two isolates each of the six

described Nothophytophthora species the Phire Plant Direct Master Mix (Thermo Fisher Sci-

entific Inc., Gloucester, UK) was applied for direct PCR from fresh pure cultures growing on

V8A, following the manufacturer’s instructions. The mycelium extract diluted in dilution

buffer was stored at –20˚C. For N. irlandica and N. lirii five nuclear and three mitochondrial

loci were amplified and sequenced. The internal transcribed spacer region (ITS1–5.8S–ITS2)

of the ribosomal RNA gene (ITS) and the 5’ terminal domain of the large subunit (LSU) of the

nuclear ribosomal RNA gene (nrDNA) were amplified separately using the primer–pairs

ITS1/ITS4 [18] and LR0R/LR6–O [19,20]. Partial heat shock protein 90 (hsp90) gene was

amplified with the primers HSP90F1int and HSP90R1 as described previously [21]. Segments

of the β-tubulin (btub), the mitochondrial genes cytochrome c oxidase subunit 1 (cox1), and

NADH dehydrogenase subunit 1 (nadh1) genes were amplified with primers TUBUF2 and

TUBUR1, COXF4N and COXR4N, FM84 and FM85, and NADHF1 and NADHR1, respec-

tively, using the PCR reaction mixture and cycling conditions as described earlier [22,23]. Par-

tial rps10 gene was amplified according to the protocol provided by OomyceteDB (http://

oomycetedb.cgrb.oregonstate.edu/protocols.html) using primer pair rps10_DB-FOR and

rps10_DB-REV. Partial tigA gene amplification was performed using primers Tig_FY and

G3PDH_rev according to Blair et al. [21]. For the six described Nothophytophthora species

only rps10 and tigA were amplified. All amplicons were purified and sequenced in both direc-

tions by Eurofins Genomics GmbH (Cologne and Ebersberg, Germany) using the primers of

the PCR reactions except for the tigA amplicons for which primers Tig_rev and G3PDH_for

were used [21]. Electropherograms were quality checked and forward and reverse reads were

compiled using Geneious Prime v. 2021.0.3 (Biomatters Ltd., Auckland, New Zealand). Clearly

visible pronounced double peaks were considered as heterozygous positions and labelled

according to the IUPAC coding system. All sequences derived in this study were deposited in

GenBank and accession numbers are given in Table 1.

Phylogenetic analysis

The sequences obtained in this work for N. irlandica, N. lirii and the six described Nothophy-
tophthora species were complemented with sequences of the latter retrieved from GenBank

[1]. The sequences of the loci used in the analyses were aligned using the online version of

MAFFT v. 7 [24] by the E-INS-I strategy (ITS) or the G-INS-I strategy (all other loci).
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To analyse the phylogenetic positions of N. irlandica and N. lirii within the genus Notho-
phytophthora a 5-partition dataset (5,492 characters) of the nuclear loci ITS, LSU, btub, hsp90
and tigA and 3-partition dataset (1,762 characters) of the mtDNA genes cox1, nadh1 and rps10
were established. All analyses included five isolates of N. irlandica, 10 isolates of N. lirii, two

isolates each of the six known Nothophytophthora species and Phytophthora rubi (CBS 967.95)

as outgroup taxon. With both datasets Bayesian (BI) analyses were performed using MrBayes

3.1.2 [25,26] into partitions with the invgamma model. Four Markov chains were run for 20 M

generations, sampling every 1,000 steps, and with a burn in at 8,000 trees. In addition, Maxi-

mum-Likelihood (ML) analyses were carried out using the raxmlGUI v. 2.0 [27] implementa-

tion of RAxML [28] with a GTR+G nucleotide substitution model. There were 10 runs of the

ML and bootstrap (“thorough boostrap”) analyses with 1,000 replicates used to test the support

of the branches. Phylogenetic trees were visualized in MEGA X [29] and edited in figure editor

programs. Datasets presented and trees deriving from Maximum likelihood and Bayesian anal-

yses are available from TreeBASE (27579; http://purl.org/phylo/treebase/phylows/study/TB2:

S27579).

Morphology of asexual and sexual structures

Formation of sporangia was induced by submersing two 12–15 mm square discs cut from the

growing edge of a 3–7 d old V8A colony in a 90 mm diam Petri dish in non-sterile soil extract

(50 g of filtered oak forest soil in 1000 ml of distilled water, filtered after 24 h; [30]). The Petri

dishes were incubated at 20˚C in natural light and the soil extract was changed after 6 h [31].

Shape, type of apex, caducity and special features of sporangia and the formation of hyphal

swellings were recorded after 24–48 h. For each isolate 40 sporangia and 25 zoospore cysts

were measured at ×400 using a compound microscope (Zeiss Imager.Z2), a digital camera

(Zeiss Axiocam ICc3) and a biometric software (Zeiss ZEN). The formation of chlamydo-

spores and hyphal swellings was examined on V8A after 15–30 d growth at 20˚C in the dark.

For each isolate 40 chlamydospores and hyphal swellings chosen at random were measured

under a compound microscope at ×400 [1,31].

The formation of gametangia (oogonia and antheridia) and their characteristic features

were examined after 21–30 d growth at 20˚C in the dark on a carrot agarose medium [32]. Iso-

lates from both new taxa were also paired with A1 and A2 tester strains of P. ramorum using

the method of Brasier and Kirk [33] and with A1 and A2 tester strains of P. cinnamomi using

the method of Jung et al. [31].

Colony morphology, growth rates and cardinal temperatures

Colony growth patterns of bothNothophytophthora species were described from 14–d–old cul-

tures grown at 20˚C in the dark in 90 mm plates on CA, V8A and potato dextrose agar (PDA;

Oxoid Ltd., UK) [31,34,35]. For temperature-growth relationships, five and nine isolates of N.

irlandica and N. lirii, respectively, were subcultured onto 90 mm V8A plates and incubated for

24 h at 20˚C to stimulate onset of growth [31]. Then three replicate plates per isolate were

transferred to 10, 15, 20, 25, 26, 27, 28, 29 and 30˚C. Radial growth was recorded after 6 d,

along two lines intersecting the centre of the inoculum at right angles and the mean growth

rates (mm/d) were calculated. To determine the lethal temperature, plates showing no growth

at 26, 27, 28, 29 or 30˚C were re-incubated at 20˚C.

Nomenclature

The electronic version of this article in Portable Document Format (PDF) in a work with an

ISSN or ISBN will represent a published work according to the International Code of
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Nomenclature for algae, fungi and plants, and hence the new names contained in the electronic

publication of a PLOS ONE article are effectively published under that Code from the electronic

edition alone, so there is no longer any need to provide printed copies. In addition, new names

contained in this work have been submitted to MycoBank from where it will be made available

to the Global Names Index. The unique MycoBank number can be resolved and the associated

information viewed through any standard web browser by appending the MycoBank number

contained in this publication to the prefix http://www.mycobank.org/MB/. The online version

of this work is archived and available from the following digital repositories: PubMed Central,

LOCKSS.

Results

Phylogenetic analysis

Across a concatenated 7,254 character alignment of the five nuclear loci LSU, btub, hsp90, ITS

and tigA, and the three mtDNA genes cox1, nadh1 and rps10, N. irlandica had 16 unique poly-

morphisms and differed from N. lirii, N. amphigynosa, N. caduca, N. chlamydospora, N. intri-
cata, N. valdiviana and N. vietnamensis at 96–100 (1.3–1.4%), 364–368 (5.0–5.1%), 384–394

(5.3–5.4%), 43–44 (0.6%), 231 (3.2%), 134 (1.9%) and 226 (3.1%) positions, respectively.

Nothophytophthora lirii had 45–50 unique polymorphisms, and differed from N. amphigynosa,
N. caduca, N. chlamydospora, N. intricata, N. valdiviana and N. vietnamensis at 381–387

(5.3%), 389–407 (5.4–5.6%), 104–113 (1.4–1.6%), 226–243 (3.3%), 139–148 (1.9–2.0%) and

233–240 (3.2–3.3%) positions, respectively. Apart from the partially heterozygous position

1,419 in tigA, all isolates of N. irlandica were identical across all eight loci. Conversely, within

N. lirii the three isolates from a tributary of the Shimna River in Northern Ireland (CBS

147244, P18-27A, P18-27C) differed from the six isolates from Ireland at 31 positions. The iso-

lates of N. lirii were heterozygous at 7–8, 3–4, 0–1 and 19–21 positions in btub, hsp90, ITS and

tigA, respectively, whereas N. irlandica had only one heterozygous position each in ITS and

tigA. No heterozygous positions were found in the cox1, nadh1 and rps10 sequences of any

Nothophytophthora species. Nothophytophthora irlandica had in the ITS two 1bp insertions at

positions 1,037 and 1,067 which were shared only with N. chlamydospora and N. valdiviana
while most isolates of N. lirii had a unique deletion at position 427.

Since for both the nuclear 5-partion dataset and the mitochondrial 3-partition dataset the

trees resulting from the BI and ML analyses had similar topologies the Bayesian trees are pre-

sented here with both Bayesian Posterior Probability values and Maximum Likelihood boot-

strap values included (Figs 2 and 3; TreeBASE: 27579). In all analyses N. irlandica, N. lirii and

the six known Nothophytophthora species formed eight distinct, strongly supported clades

(Figs 2 and 3).

For the nuclear 5-partion dataset the BI analysis provided higher support for the deeper

nodes than the ML analysis (Fig 2). Nothophytophthora irlandica and N. lirii were closely

related and formed a fully supported clade which clustered in sister position to N. valdiviana.
Within N. lirii the three isolates from a tributary of the Shimna River in Northern Ireland

(CBS 147244, P18 27A, P18 27C) constituted a distinct, well supported subclade. Nothophy-
tophthora chlamydospora resided in a strongly supported basal position to the N. irlandica—N.

lirii—N. valdiviana cluster. This clade of four sterile species clustered in sister position to a

clade comprising the three homothallic species N. amphigynosa,N. intricata andN. vietnamen-
sis. The sterile species N. caduca resided in a basal position to these two clades.

The BI and ML trees of the mitochondrial 3-partition dataset had a different topology com-

pared to the nuclear 5-loci trees and showed character conflicts at deeper nodes indicated by

low support values and a polytomy (Fig 3). Nothophytophthora irlandica and N. chamydospora
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formed a fully supported clade which resided in sister position to N. lirii. Similar to the nuclear

analyses the three N. lirii isolates from a tributary of the Shimna River in Northern Ireland

formed a distinct subclade separated from the Irish N. lirii isolates. Nothophytophthora caduca
was basal to the N. irlandica—N. lirii—N. chlamydospora cluster while N. amphigynosa resided

in sister position to N. valdiviana instead of clustering with the two sister species N. intricata
and N. vietnamensis.

Taxonomy

Nothophytophthora irlandica O’Hanlon, I. Milenković & T. Jung, (Fig 4).

MycoBank: MB838319.

Etymology: Name refers to Ireland, the region where the taxon was first found.

Typus: Ireland, County Wicklow, isolated from a tributary of the Ow River in a temperate,

planted coniferous forest, R. O’Hanlon, 05 December 2014 (CBS H-24576 holotype, dried

Fig 2. Fifty percent majority rule consensus phylogram derived from Bayesian phylogenetic analysis of nuclear 5-loci (LSU, ITS, btub, hsp90, tigA) dataset of

Nothophytophthora irlandica and N. lirii sp. nov. and six known Nothophytophthora species. Bayesian posterior probabilities (left) and Maximum Likelihood

bootstrap values (right; in %) are indicated, but not shown below 0.7 and 60%, respectively. Phytophthora rubi was used as outgroup taxon. Scale bar indicates 0.1 expected

changes per site per branch.

https://doi.org/10.1371/journal.pone.0250527.g002
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culture on CA, herbarium Westerdijk Fungal Biodiversity Institute, CBS 147242 = Pr13-109,

ex-type culture). ITS and cox1 sequences GenBank MW364574 and MW367172, respectively.

Additional specimens: Ireland, County Waterford. Isolated from Owenashad River in a tem-

perate mixed coniferous and deciduous forest. Collected: R. O’Hanlon, July 2017; CBS

147243 = P17-76A, P17-76, P17-76B. July 2018; P18-110B.

Sporangia, hyphal swellings and chlamydospores (Fig 4)—Sporangia of N. irlandica were

infrequently observed on solid V8A and were produced abundantly after 24 hr in non-sterile

soil extract. Sporangia were usually borne terminally (Fig 4A–4H and 4J) or very rarely lat-

erally on unbranched undulating sporangiophores or less frequently in dense sympodia of 2–4

sporangia (Fig 4J). Mature sporangia were non-papillate (Fig 4A–4F and 4I) and had a con-

spicuous opaque plug formed inside the sporangiophore close to the sporangial base which

averaged 2.7 ± 0.9 μm (Fig 4A–4G and 4I). They were partially caducous breaking off just

below the basal plug (Fig 4I). Sporangial shapes ranged from ovoid or elongated ovoid (28.5%;

Fig 4A–4C and 4G), ellipsoid (29.3%; Fig 4E and 4I) and limoniform (41.5%; Fig 4F and 4I) to

Fig 3. Fifty percent majority rule consensus phylogram derived from Bayesian phylogenetic analysis of mitochondrial 3-loci (cox1, nadh1, rps10) dataset of

Nothophytophthora irlandica and N. lirii sp. nov. and six known Nothophytophthora species. Bayesian posterior probabilities (left) and Maximum Likelihood

bootstrap values (right; in %) are indicated, but not shown below 0.7 and 60%, respectively. Phytophthora rubi was used as outgroup taxon. Scale bar indicates 0.1

expected changes per site per branch.

https://doi.org/10.1371/journal.pone.0250527.g003
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Fig 4. Morphological structures of Nothophytophthora irlandica. a–j. structures formed on V8 agar flooded with

non-sterile soil extract. a–i. mature, nonpapillate, terminal sporangia with conspicuous basal plugs; a. ovoid; b. ovoid,

laterally attached; c. elongated-ovoid with vacuole and beginning external proliferation (arrow); d. obpyriform; e.

ellipsoid; f. limoniform; g. ovoid, before release of the fully differentiated zoospores; h. same ovoid sporangium as in g

releasing zoospores; i. caducous sporangia with short pedicel–like basal plugs (arrows); j. dense sympodium with two

empty sporangia after zoospore release and one immature sporangium; k–r. structures formed in solid V8 agar; k–p.

globose chlamydospores; k. terminal; l–m. intercalary inserted; n–o. terminal, with radiating hyphae showing

abundant production of short lateral hyphae; p. intercalary inserted with small elongated hyphal swelling; q–r. large

ovoid hyphal swellings. Scale bar = 25 μm, applies to a–r.

https://doi.org/10.1371/journal.pone.0250527.g004
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obpyriform (<1%; Fig 4D). Sporangia with special features like lateral attachment of the spo-

rangiophore (27.1%; Fig 4B, 4C and 4I), a vacuole (<1%; Fig 4C) or undulating sporangio-

phores (32.1%) occurred in all isolates. Sporangia proliferated exclusively externally, usually

immediately below the sporangial base (Fig 4C and 4J). Sporangial dimensions of five isolates

averaged 47.1 ± 6.1 × 28.5 ± 3.4 μm (overall range 28–74.2 × 15.9–46.6 μm and range of isolate

means 44.4–51.1 × 23.3–30.7 μm). The length/breadth ratio averaged 1.7 ± 0.2 with a range of

isolate means of 1.5–1.9 (Table 2). Zoospores were discharged through an exit pore 5.8–

14.9 μm wide (av. 10.6 ± 1.8 μm; Fig 4H and 4J). Zoospores were limoniform to reniform

whilst motile, becoming spherical (av. diam = 9.6 ± 1.3 μm) on encystment. Cysts germinated

directly. Intercalary, globose to subglobose or limoniform, sometimes catenulate hyphal swell-

ings, measuring 12.8 ± 3.8 μm, were infrequently formed on sporangiophores by all isolates.

Globose (99.9%; Fig 4K–4P) or less frequently pyriform, limoniform or irregular (<1%) chla-

mydospores were produced terminally (Fig 4K, 4N and 4O) or intercalary (Fig 4L, 4M and 4P)

and measured 42.0 ± 4.0 μm (Table 2). They often had radiating hyphae which usually showed

intense and dense branching close to the chlamydospore (Fig 4N and 4O). Hyphal swellings

were also observed (Fig 4Q and 4R).

Oogonia, oospores and antheridia—All five isolates of N. irlandica examined were self-ster-

ile and did not form gametangia in single culture or in pairings with A1 and A2 tester strains

of P. ramorum and P. cinnamomi.
Colony morphology, growth rates and cardinal temperatures (Figs 5 and 6)—Colonies of

the five tested isolates of N. irlandica on V8A and CA were appressed to submerged and had

either rosaceous or faintly striate to uniform patterns. On PDA colonies of all isolates were

appressed and dense felty with a more or less clear rosaceous pattern and irregular margins

(Fig 5). All five isolates of N. irlandica included in the temperature-growth test had similar

growth rates and cardinal temperatures. The maximum and lethal growth temperatures were

25 and 30˚C, respectively (Table 2, Fig 6). The average radial growth rate at the optimum tem-

perature of 20˚C was 2.1 ± 0.3 mm/d (Table 2, Fig 6).

Nothophytophthora lirii O’Hanlon, I. Milenković & T. Jung, (Fig 7).

MycoBank: MB838320.

Etymology: Name refers to the mythological King Lir in Gaelic folklore. The Children of Lir

were transformed into swans and cursed so that they could never leave certain waterbodies in

Ireland. This taxon has to date only been found in waterbodies in the island of Ireland.

Typus: Ireland, County Waterford. Isolated from Owenashad River in a temperate mixed

forest. Collected: R. O’Hanlon, 18 March 2014 (CBS H-24577 holotype, dried culture on CA,

herbarium Westerdijk Fungal Biodiversity Institute, CBS 147293 = Pr12-475, ex-type culture).

ITS and cox1 sequences GenBank MW364584 and MW367182, respectively.

Additional specimens: UK, Northern Ireland, County Down. Isolated from a tributary of the

Shimna River. Collected: R. O’Hanlon, March 2018; CBS 147244 = P18-27B, P18-27A, P18-

27C. Ireland, County Waterford. Isolated from Owenashad River in a temperate mixed conif-

erous and deciduous forest. Collected: R. O’Hanlon, June 2018; P18-95B, P18-99B, P18-104,

P18-105; August 2018; P18-157.

Sporangia, hyphal swellings and chlamydospores (Fig 7)—Sporangia of N. lirii were infre-

quently observed on solid V8A and were produced abundantly after 24 hr in non-sterile soil

extract. Sporangia were borne terminally on unbranched sporangiophores (Fig 7A–7E and

7G) or less frequently laterally on short sporangiophores (Fig 7F). Sometimes secondary lateral

sporangia are formed just below the empty upper section of a sporangiophore (Fig 7K) after

the terminal sporangia have already released zoospores. Rarely, dense sympodia of 3 to 4 spo-

rangia were observed (Fig 7L). Sporangia were mostly non-papillate (Fig 7A–7C and 7G) or

rarely shallow semi-papillate (Fig 7D and 7E). In all mature sporangia a conspicuous opaque
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Table 2. Morphological characters and dimensions (mean ± SD; μm), cardinal temperatures (˚C) and temperature-growth relations (mm/d) on V8-juice agara of

Nothophytophthora irlandica, N. lirii and six known Nothophytophthora species (data from Jung et al. [1]).

N. irlandica N. lirii N.

amphigynosa
N. caduca N.

chlamydospora
N.

valdiviana
N. intricata N.

vietnamensis
No. of isolates 5 b 9 b 8 b 14 b 5 b 5 b 6 b 8 b

Sporangia 28.8% ovoid/

elongated ovoid,

29.6% ellipsoid,

41.7%

limoniform, 1%

obpyriform

23.4% ovoid/elong.

ovoid (23.4%), 31.5%

ellips-oid, 40.9%

limoniform, 1%

obpyriform

82% ovoid,

12% ellipsoid,

5% obpyriform

(limoniform,

mouse-shaped)

83% ovoid,

7% ellipsoid,

4%

limoniform

(obpyriform,

pyriform,

mouse-

shaped)

44% ovoid,

27.5% ellipsoid,

22.5%

limoniform

(obpyriform,

pyriform,

mouse-shaped)

50.5%

ovoid,

40.5%

limoni-

form, 6%

ellipsoid,

(obpy-

riform,

pyriform,

mouse-

shaped)

71% ovoid,

15%

obpyriform,

7%

limoniform,

5% ellipsoid

(pyriform,

mouse-

shaped)

91% ovoid,

6% ellipsoid,

3%

limoniform

lxb mean 47.1 ± 6.1 × 28.5

± 3.4

43.4 ± 6.5 × 25.0 ± 2.9 47.0±5.6 x

26.4±1.8

37.9±4.6 x

25.7±3.0

37.6±4.9 x 22.1

±2.5

42.7±4.6 x

28.0±3.5

38.5±2.8 x

24.8±1.5

36.4±12.7 x

29.3±8.1

range of isolate

means

44.4–51.1 × 23.3–

30.7

36.3–46.9 × 22.6–27.8 41.5–52.0 x

25.4–27.3

34.7–43.1 x

23.3–28.2

35.6–38.9 x

20.4–23.2

40.4–44.7 x

25.6–29.5

37.6–40.5 x

23.4–26.3

34.1–37.9 x

24.1–25.8

total range 28–74.2 × 15.9–

46.6

27.3–65.1 × 16.3–34.8 33.6–60.6 x

21.3–32.4

24.1–54.4 x

18.1–35.9

27.4–57.2 x

17.0–30.8

30.2–55.7 x

18.6–47.5

27.8–49.2 x

18.6–30.2

28.4–42.1 x

20.6–28.1

l/b ratio 1.66 ± 0.24 1.74 ± 0.15 1.78 ± 0.17 1.48 ± 0.15 1.71 ± 0.17 1.53 ± 0.14 1.55 ± 0.18 1.47 ± 0.08

caducity partially

caducous

partially caducous – 32.1% (10–

53%)

25.2% (11–41%) 6.8% (4–

10%)

– 15.8% (4–

36%)

pedicel-like

basal plug

2.7 ± 0.9 2.7 ± 0.9 2.9 ± 0.6 2.6 ± 0.7 2.8 ± 1.6 2.4 ± 0.5 2.9 ± 0.7 2.7 ± 0.7

internal

proliferation

– – – nested and

extended

– nested and

extended

– –

exitpores 10.58 ± 1.82 9.3 ± 1.78 8.9 ± 1.4 10.4 ± 2.2 8.2 ± 1.7 9.4 ± 1.8 9.0 ± 1.6 7.6 ± 1.5

sympodia Infrequent, lax infrequent, lax infrequent,

lax

frequent, lax frequent, lax or

dense

frequent,

lax or dense

infrequent,

lax

frequent, lax

or dense

zoospore cysts 9.64 ± 1.32 8.72 ± 1.63 9.0 ± 1.1 7.4 ± 0.6 8.6 ± 0.8 8.6 ± 1.1 8.1 ± 1.1 8.4 ± 0.7

sporangiospore

swellings

12.8 ± 3.8;

infrequent

n/a; rare 11.1 ± 2.8; rare 10.2 ± 2.0; rare 15.2 ± 6.3; rare 14.0 ± 2.7;

rare

9.8 ± 1.5; rare n/a; rare

Breeding system self-sterile self-sterile Homothallic self-sterile self-sterile self-sterile homothallic homothallic

Oogonia

mean diam – – 25.3 ± 1.7 – – – 30.1 ± 3.9 23.9 ± 3.0

range of isolate

means

– – 24.3–25.5 – – – 28.1–31.8 22.3–27.3

total range – – 18.4–29.7 – – – 16.7–41.8 18.6–33.0

tapering base – – 2.9% (0–7.5%) – – – 7.5% (0–30%) 75.4% (42–

95%)

thin stalks – – 58.3% (10–

100%)

– – – 29.4% (2.5–

45%)

3.1% (0–

12.5%)

curved base – – - – – – 1.3% (0–5%) 24.4% (7.5–

32.5%)

elongated – – 12.5% (5–20%) – – – 5.6% (0–

17.5%)

70.6% (60–

85%)

Oospores – – – – –

plerotic oospores – – 99.2% – – – 96.9% (92.5–

100%)

96.9% (87.5–

100%)

mean diam – – 23.4 ± 1.7 – – – 28.3 ± 3.5 22.5 ± 2.4

Total range – – 17.2–28.0 – – – 15.7–38.4 17.6–29.5

wall diam – – 1.7 ± 0.3 – – – 2.1 ± 0.4 1.8 ± 0.3

(Continued)
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plug was formed inside the sporangiophore close to the sporangial base which averaged

2.7 ± 0.9 μm (Fig 7A–7H, 7J and 7L). Sometimes a conspicuous double plug could be observed

(Fig 7E and 7G). Sporangia were partially caducous breaking off below the basal plug (Fig 7H

and 7J). Sporangial shapes ranged from ovoid or elongated ovoid (23.4%; Fig 7A–7C and 7H–

7J), ellipsoid or elongated ellipsoid (31.5%; Fig 7D, 7G and 7L) and limoniform (40.9%; Fig 7F

and 7L) to obpyriform or elongated obpyriform (1%; Fig 7E). Sporangia with special features

like lateral attachment of the sporangiophore (11.8%; Fig 7B), curved apex (1.0%; Fig 7G), a

vacuole (1%; Fig 7A) or undulating sporangiophores (31.8%) occurred in all isolates. Sporan-

gia proliferated exclusively externally, usually immediately below the old sporangium (Fig 7D,

7F, 7H and 7L). Sporangial dimensions of nine isolates averaged 43.4 ± 6.5 × 25.0 ± 2.9 μm

(overall range 27.3–65.1 × 16.3–34.8 μm and range of isolate means 36.3–46.9 × 22.6–

27.8 μm). The length/breadth ratio averaged 1.74 ± 0.15 with a range of isolate means of 1.6–

2.0 (Table 2). In all isolates, a few sporangia failed to form a basal septum and continued to

grow at the apex (Fig 7T). Zoospores were discharged through an exit pore 5.1–14.5 μm wide

(av. 9.3 ± 1.8 μm; Fig 7I and 7L). Zoospores were limoniform to reniform whilst motile,

Table 2. (Continued)

N. irlandica N. lirii N.

amphigynosa
N. caduca N.

chlamydospora
N.

valdiviana
N. intricata N.

vietnamensis
oospore wall

index

– – 0.38 ± 0.05 – – – 0.38 ± 0.06 0.42 ± 0.05

Abortion rate – – 4.2% (1–25%) – – – 10.8% (1–

18%)

1.0% (0–4%)

Antheridia – – 87.2%

amphigynous

– – – 100%

paragynous

100%

paragynous

size – – 8.5±1.8 x 6.5

±0.9

– – – 10.0±1.9 x 6.9

±1.2

7.2±1.2 x 4.6

±0.9

intricate stalks – – 28.8% (22.5–

35%)

– – – 63.3% (50–

72.5%)

46.7% (42.5–

52.5%)

Chlamydospores 99% globose, 1%

pyriform;

42.0 ± 4.0

99% globose, 1%

pyriform; 51.7 ± 6.7

– – 98.1% globose,

1.9% pyriform;

radiating;

clusters;

43.7 ± 7.0

– – –

Hyphal

swellings

Globose,

(limoform)

12.8 ± 3.8

Globose, (pyriform),

14.75 ± 6

– – globose, (pyri-,

limoni-form);

29.2 ± 6.1

– – –

Lethal

temperature

30 or 32.5 32.5 or 35 28 28 or 30 26 30 28 29

Maximum

temperature

25 25 27 26 or 28 25 28 27 27

Optimum

temperature

20 20 20 20 or 25 20 25 25 25

Growth rate at

20˚C

2.1 ± 0.25 1.7 ± 0.34 3.1 ± 0.05 3.1 ± 0.21 3.2 ± 0.05 2.9 ± 0.05 2.2 ± 0.06 2.5 ± 0.04

Growth rate at

25˚C

1.2 ± 0.18 1.4 ± 0.15 3.0 ± 0.06 3.6 ± 0.08 0.5 ± 0 3.1 ± 0.1 2.5 ± 0.07 2.9± 0.05

a Oogonia and oospores were studied and measured on carrot agar.
b Numbers of isolates included in the growth tests: N. irlandica = 6; N. lirii = 8; N. amphigynosa = 4; N. caduca = 10; N. chlamydospora = 4; N. valdiviana = 4; N.

intricata = 5; N. vietnamensis = 8.

– = character not observed.

Most discriminating characters are highlighted in bold. in brackets are ranges of isolate means.

https://doi.org/10.1371/journal.pone.0250527.t002
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becoming spherical (av. diam = 8.7 ± 1.6 μm) on encystment. Cysts germinated directly. Inter-

calary, globose or limoniform, sometimes catenulate hyphal swellings, measuring 14.6 ± 6 μm,

were formed by all isolates. Globose (99.9%; Fig 7M–7S) or less frequently pyriform to irregu-

lar (0.1%) chlamydospores were produced terminally (Fig 7M, 7N, 7P and 7Q), laterally (Fig

7O) or intercalary (Fig 7R and 7S) and measured 51.7 ± 6.7 μm (Table 2). They sometimes had

radiating irregular hyphae with small hyphal swellings (Fig 7P and 7Q). Oogonia, oospores

and antheridia—all seven tested isolates of N. lirii were self-sterile and did not form gametan-

gia in single culture or in pairings with A1 and A2 tester strains of P. ramorum or P.

cinnamomi.
Colony morphology, growth rates and cardinal temperatures (Figs 5 and 6)—Colonies

showed slight variations between the nine isolates tested. On V8A and CA they were mostly

faintly radiate with limited, appressed-felty aerial mycelium in the center and often with irreg-

ular and sometimes submerged margins. On PDA colonies were dense-felty white, sometimes

with faint concentric rings and always with irregular margins which were partly submerged

(Fig 5). Temperature-growth relations are shown in Fig 6. All nine tested isolates had similar

growth rates and cardinal temperatures. The maximum and lethal growth temperatures were

25 and 30˚C, respectively. The average radial growth rate at the optimum temperature of 20˚C

was 1.7 ± 0.3 mm/d (Table 2; Fig 6).

Notes

Nothophytophthora irlandica and N. lirii share many features with the six described Nothophy-
tophthora species, including slow colony growth with relatively low maximum temperatures

for growth and the production of a conspicuous opaque plug at the sporangial base. Both new

Nothophytophthora species differ from N. amphigynosa, N. caduca, N. intricata, N. valdiviana

Fig 5. Colony morphology of Nothophytophthora irlandica isolates CBS 147242 and P17-76, and Nothophytophthora lirii isolates CBS 147244, P18-105, P18-27A

and P18-99B (from left to right) after 14 d growth at 20˚C on V8 agar, carrot agar and potato-dextrose agar (from top to bottom).

https://doi.org/10.1371/journal.pone.0250527.g005
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andN. vietnamensis by having considerably slower growth at both 20˚C and 25˚C and, in addi-

tion, from N. intricata, N. valdiviana and N. vietnamensis by having a lower optimum temper-

ature for growth (20˚C vs 25˚C) (Fig 6; [1]). In addition, they are easily distinguished from

N. amphigynosa, N. intricata and N. vietnamensis by being sterile (Table 2; [1]). Nothophy-
tophthora chlamydospora is phylogenetically closest to the two new Nothophytophthora species

and shares with them the sterile breeding system and the production of chlamydospores and

of partially caducous sporangia with exclusively external proliferation (Table 2; [1]). However,

N. irlandica and N. lirii can be distinguished from N. chlamydospora by having considerably

slower growth at 15 and 20˚C and faster growth at 25˚C, by producing smaller sporangial sym-

podia (less than 4 sporangia vs less than 6–8 sporangia) and by the absence of secondary chla-

mydospores on hyphae radiating from primary chlamydospores. In addition, compared to N.

chlamydospora, N. lirii and N. irlandica produce on average larger chlamydospores and longer

sporangia, respectively. Nothophytophthora irlandica and N. lirii differ from each other in the

sizes of their sporangia and chlamydospores and in their colony morphologies on V8A and

CA (Table 2; Fig 5). Furthermore, N. irlandica and N. lirii formed well supported distinct

clades in the BI and ML analyses of both the nuclear 5-loci and the mitochondrial 3-loci

datasets.

Hosts and geographic distribution

Nothophytophthora irlandica and N. lirii have hitherto only been detected on R. ponticum
leaves floating naturally or as baits in streams in Ireland and Northern Ireland. Naturally fallen

Fig 6. Mean radial growth rates on V8 agar at different temperatures for Nothophytophthora irlandica (5 isolates) and N. lirii (9 isolates) from this study in

comparison to N. amphigynosa, N. caduca, N. chlamydospora, N. intricata, N. valdiviana and N. vietnamensis (data from Jung et al. 2017a [1]).

https://doi.org/10.1371/journal.pone.0250527.g006
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Fig 7. Morphological structures of Nothophytophthora lirii. a–l. structures formed on V8 agar flooded with non-

sterile soil extract. a–j. mature sporangia with conspicuous basal plugs; a. nonpapillate, ovoid with vacuole; b.

nonpapillate, ovoid, slighly laterally attached; c. nonpapillate, elongated-ovoid; d. ellipsoid, with swollen apex before

zoospore release and with beginning external proliferation (arrow); e. nonpapillate, elongated-obpyriform with two

basal plugs (arrow); f. nonpapillate, limoniform, on a short lateral hypha, with vacuole and external proliferation; g.

nonpapillate, elongated-ellipsoid, curved, with two basal plugs (arrow); h. ovoid, with swollen apex before release of the

fully differentiated zoospores, with beginning external proliferation; almost breaking-off at the basal plug (arrow); i.

same ovoid sporangium as in g releasing zoospores; j. elongated-ovoid, caducous sporangium with short pedicel–like

basal plug (arrow); k. secondary, lateral sporangium forming just below the empty upper section of the sporangiophore

(arrow); l. dense sympodium with two empty sporangia after zoospore release and one immature limoniform

sporangium; m–t. structures formed in solid V8 agar; m–s. globose or subglobose thick-walled chlamydospores; m.
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leaves of other tree species (e.g. Fraxinus, Fagus, Corylus, Quercus) floating in rivers at loca-

tions where the new Nothophytophthora species had been recovered never yielded any isolates

of Nothophytophthora. Similarly, testing of symptomatic foliage from R. ponticum plants near

two of these streams never yielded any isolates of Nothophytophthora. Several other oomycete

species were recovered from the same streams, including Phytophthora gonapodyides, P. chla-
mydospora, P. lacustris, and Elongisporangium undulatum. Also, P. ramorum and P. cactorum
were isolated from foliage of R. ponticum plants near the streams. Although several hundred

leaves were tested for oomycetes only 15 isolates of N. lirii and N. irlandica were obtained dur-

ing 2 of the 17 baiting occasions and 5 of the 15 sampling occasions of naturally fallen leaves.

Therefore, neither of the two new Nothophytophthora species can be considered as being com-

mon in the watercourses surveyed.

Discussion

This study has shown that the unknown oomycete isolates from streams in Ireland and North-

ern Ireland constitute two new distinct Nothophytophthora species, described here as N. irlan-
dica and N. lirii. Both new species were differentiated from the six known Nothophytophthora
species and from each other based on morphological characteristics, temperature-growth rela-

tionships and multi-locus phylogenetic analyses. The nuclear and mitochondrial multi-loci

trees had different topologies indicating different evolutionary histories of the nuclear and

mitochondrial Nothophytophthora genomes. Discordances between mitochondrial and

nuclear genealogies are common and usually caused by incomplete lineage sorting or mito-

chondrial introgression [36–40]. Nonetheless, N. irlandica, N. lirii and the six known Notho-
phytophthora species formed in the BI and ML analyses of both the nuclear and mtDNA

multi-locus datasets eight distinct strongly supported clades.

In the original description of the genus Nothophytophthora Jung et al. [1] pointed out that

despite numerous oomycete surveys being carried out each year across the globe, sequences of

just three strains at GenBank were matching Nothophytophthora. Two of these strains are des-

ignated here as ex-type isolates of N. irlandica (Pr13-109 = CBS 147242) and N. lirii (Pr12-

475 = CBS 147293). A third strain, named “Phytophthora sp. REB326-69”, was isolated from a

stream in Huia in New Zealand [5] and its sequence (GenBank accession JX122744) showed

99% similarity to N. chlamydospora and N. valdiviana [1] and also to N. irlandica and N. lirii.
Additional btub sequence screening of isolates derived from stream baiting in northern New

Zealand between 2008 and 2010 [4] revealed 17 isolates in theN. irlandica—N. lirii clade (Gen-

Bank accessions MW542641–MW542657). Further characterisation of two of these isolates

with cox1 sequences (GenBank accessions MW542639 and MW542640) determined that they

were N. irlandica. Nothophytophthora caduca, N. chlamydospora and N. valdiviana were

described from the Valdivian region in Chile while N. amphigynosa, N. intricata and N. vietna-
mensis were first detected in Portugal, Germany and Vietnam, respectively [1]. In recent global

surveys, using classical baiting tests or metabarcoding approaches, both described and

unknown Nothophytophthora taxa were infrequently detected. These included Portugal [41],

Indonesia and Japan (T. Jung, M. Horta Jung, C. M. Brasier and A. Duràn unpublished), Nor-

way (T. Jung, T. Corcobado, I. Milenkovic and V. Talgø unpublished), Scotland [42], Czech

Republic and Slovakia [7] and Spain [43]. In addition, LSU, btub and cox1 sequences recently

submitted to GenBank (e.g. accession nos. for isolate SM08APR_ANG1: MG685808,

terminal; n. subglobose, intercalary inserted; o. laterally sessile; p–q. terminal with a few swollen, radiating hyphae

(arrows); r–s. intercalary inserted; t. obpyriform sporangium that ailed to form a basal septum and continued to grow

at the apex. Scale bar = 25 μm, applies to a–t.

https://doi.org/10.1371/journal.pone.0250527.g007
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MG701979, MG701951) show that N. caduca occurs in Californian streams, more than 10,000

km distant from the original findings in Chile [1]. Apparently, despite their occurrence in

most continents, members of the genus Nothophytophthora are only infrequently found in

oomycete surveys. The most likely explanation for the scarcity of Nothophytophthora records

is their slow growth in culture preventing their isolation in the presence of faster growing

oomycete genera, i.e. Elongisporangium, Pythium, Phytopythium and Phytophthora [1]. In the

temperature-growth test of this study both N. irlandica and N. lirii showed even slower growth

than the six known Nothophytophthora species. Thus, their consistent isolation over consecu-

tive years from the same streams in Ireland and Northern Ireland, despite the presence of the

much faster growing oomycetes P. chlamydospora, P. gonapodyides, P. lacustris and E. undula-
tum, indicates competitive sustainable populations.

The question arises whether the two new Nothophytophthora species are native or non-

native to Ireland and Northern Ireland. The phylogenetic analyses of this study revealed that

N. irlandica and N. lirii are closely related sister species of N. chlamydospora and N. valdiviana.
Due to their close phylogenetic relatedness these four Nothophytophthora species must origi-

nate from the same biogeographic region, either Europe or temperate regions of South Amer-

ica. There are several lines of indirect evidence supporting that the species are non-native to

the island of Ireland. The island of Ireland has no areas of pristine forests, with just 2% of the

land area of Ireland classified as semi-natural native forests [44]. Of the total forest area of

673,000 ha, 68, 19 and 13% of the forests are composed of non-native, native or a mixture of

non-native and native tree species, respectively [10]. Consequently, there are only few habitats

in Ireland or Northern Ireland left undisturbed by human activities, including the inadvertent

introduction of invasive plants and microorganisms to the wider environment. In recent years

several Phytophthora species, including P. ramorum, P. lateralis and P. kernoviae were intro-

duced to Irish habitats, most likely through the trade in plants-for-planting [11,45]. Phy-
tophthora kernoviae has only been reported from the UK, Ireland, New Zealand and Chile

[2,46–49]. Phytophthora kernoviaemost likely originates from the Valdivian rainforests of

Chile [2]. Since both N. chlamydospora and N. valdiviana also co-occur in the same forests

[1,2] it seems feasible that P. kernoviae, N. irlandica and N. lirii were all introduced from Chile

to the island of Ireland, most likely on living plants. Analogous, also the populations of P. ker-
noviae andN. irlandica in New Zealand might have been introduced from Chile, either directly

or via the UK and Ireland as steppingstones. However, population genetic analyses of Chilean,

Irish, British and New Zealand populations of Nothophytophthora and P. kernoviae are needed

to confirm this hypothesis. The limited distribution of Nothophytophthora species in streams

on the island of Ireland also points to their non-native status, with other recent surveys for

Phytophthora in Ireland failing to isolate Nothophytophthora species [12,13].

Oomycetes are increasingly emerging as one of the most significant threats to global plant

health [50–52]. Since all known Nothophytophthora isolates were recovered from waterbodies

or – less frequently – rhizosphere soil, it is important to clarify whether Nothophytophthora
species are plant pathogens or saprotrophs. Aquatic saprotrophic oomycetes, in particular Phy-
tophthora species, are usually characterised by high cardinal temperatures, fast growth, a sterile

breeding system, thin-walled chlamydospores, and the abundant production of non-papillate

persistent sporangia with internal proliferation [53,54]. Having very slow growth, low cardinal

temperatures and partially caducous sporangia with infrequent or lacking internal prolifera-

tion, Nothophytophthora species do not fit the profile of competitive aquatic saprotrophs [1].

Instead, a partially aerial lifestyle as leaf and shoot pathogens had been proposed with stream

populations resulting at least partly from canopy drip [1]. In the natural and seminatural for-

ests in Chile, Vietnam and Portugal from which N. caduca, N. chlamydospora, N. valdiviana,
N. amphigynosa and N. vietnamensis were isolated, no obvious symptoms of above-ground
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infections of plant tissues were noticed [1–3]. Likewise, in two of the streams where N. irlan-
dica and N. lirii was present in Ireland and Northern Ireland, testing of attached symptomatic

R. ponticum foliage did not reveal any Nothophytophthora species. Extensive ongoing tests of

the potential aerial and soilborne pathogenicity and host ranges of the six known Nothophy-
tophthora species, the two new Nothophytophthora species from Ireland and other yet unde-

scribed Nothophytophthora species are currently being performed and their results will help to

understand the lifestyle and pathological importance of Nothophytophthora species. Given that

both of the species described here produce chlamydospores abundantly, and these structures

are known to aid in survival of biologically unfavourable periods and in long-distance spread,

the risk of these species spreading in plant trade should be assessed [55,56].
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