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ABSTRACT ARTICLE HISTORY
This study aims to improving long-term post-fire environment Received 9 July 2020
assessment. It proposes a method for monitoring fire impact using Accepted 8 October 2020
Sentinel-2 satellite data by combining spectral and textural features
of land cover types inside a post-fire study sites. Specific objectives
were to 1) test stability of the burnt area index for Sentinel-2
(BAIS2) for identification of burn in study sites, 2) investigate the
optimal feature combination for mapping land covers inside study
sites, and 3) assess and analyse dynamic in land covers of study
sites. BAIS2 was shown independent on date acquisition of satellite
images to distinguish forest burn from other land covers over the
analysed May-September vegetation period. Texture of study site
improved the classification results. The most accurate classification
method for identification of study sites land covers (with 0.84 Kappa
coefficient and 0.86 overall accuracy) was based on combination of
Sentinel-2 bands, BAIS2, and texture by Fourier transform. Analysis
of vegetation recovery within the study sites demonstrated different
recovery rates. Natural regeneration of pine was not observed, dur-
ing three to six years of observations following fire events. The pro-
posed method and findings can support planning of forest
management measures needed to effectively restore forest cover.

KEYWORDS
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1. Introduction

Forest fires constitute natural and inevitable process. More than 65,000 wildfires
occur annually in Europe, burning an area of some half-million hectares (San-
Miguel-Ayanz et al. 2019). In recent decades, the severity and frequency of forest fires
has increased along with total area burned (Moreira 2012). In Southern Europe, the
major reasons related to fire regime changes lies in socio-economic changes occurring
after World War II linked to land abandonment and afforestation of previously
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agricultural land. That caused more fuel accumulation and landscape-level connectiv-
ity of flammable parcels (Moreira 2012). In addition to land cover changes, the
altered fire regime can be attributed also to increased temperature and shifted pre-
cipitation patterns (hotter and drier summer periods) caused by climate changes
(Moriondo et al. 2006; Koutsias et al. 2013). According to Turco et al. (Turco et al.
2014), it can be expected that fire severity will increase particularly in Mediterranean
countries, including the Balkans (Radovanovic et al. 2015).

In Serbia, forest fires constitute one of the worst forms of ecosystem damage to forests
and one of the major challenges for forest management (Milanovic 2019). In the past
decade, the area burnt per year has markedly increased, 42.3% increase in 2000s as com-
pared to 1990s (International Forest Fires News (IFFN); Lukié et al. 2017). In the period
from 2012 to 2016 alone, 414 forest fires were registered and accounted for burnt area
totalling more than 9,428 ha with average size of 25.6ha (min: 0.01; max 1383.14, StDev:
104.76 ha) (Marceta and Milanovi¢ 2018). Data collection concerning area burned by for-
est fires is provided only for state-owned forest, however, and not for privately owned
forest (Aleksic et al. 2009), even though the latter accounts for more than 1 million hec-
tares and 47% of total forested area (Bankovi¢ et al. 2008). Likewise, the surface areas
affected by forest fires are estimated either subjectively according to the size of the
affected forest unit or by GPS devices (Milanovic 2019). Consequently, forest fires occur-
ring in Serbia may be severely underreported. Meanwhile, post-fire revitalization of forest
ecosystem is costly, and these sites are often left to natural regeneration (Ratkni¢ 2017).
In order to monitor burnt forest areas and forest recovery patterns, remote sensing
methods can be applied and validated with measures being from field observations.

Mapping and modelling complex post-fire forest patterns and their changes over
time comprise a key issue in spatial forest ecology that is related to fire (Teodoro and
Amaral 2019). In recent decades, satellite optical remote sensing techniques increas-
ingly have been applied to monitoring of burnt forest areas in order to map vegeta-
tion changes (Milne 1986), measure burn severity (White et al. 1996), estimate degree
of post-fire vegetation changes (Lentile et al. 2006), and explore recovery time point
in relation to post-fire processes (Ryu et al. 2018). In studies of post-fire effects, burnt
area mapping is one of the most common applications of satellite optical remote
sensing, and it is well documented at local, regional, and global levels (Chu et al.
2013). Satellite remote sensing methods used to map post-fire patterns are based on
supervised classification (Kontoes et al. 2009), object-based classification
(Polychronaki and Gitas 2010; Mencuccini and Christoffersen 2019), analysis of single
spectral indices (Huang et al. 2016), multitemporal series of spectral indices
(Filipponi 2019), linear transformations (Patterson and Yool 1998), and spectral
unmixing procedure (Meng et al. 2017). Assessment of ecological responses (e.g.
vegetation recovery) as part of burn-severity analysis is also studied in part using
remote sensing. The tools used most frequently for analysing and mapping the tem-
poral and spatial dynamics of post-fire environments are vegetation indices (Cuevas-
Gonzalez et al. 2009; Morresi et al. 2019) and products derived from them
(Veraverbeke et al. 2012). These advanced approaches have been applied mostly to
Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM) imagery, which
combines 30m spatial resolution and 16-day revisiting time and is regarded as the
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most valuable source of time-series data at a landscape scale — long temporal record
of Landsat from 1982 to present (Banskota et al. 2014; Vogelmann et al. 2016).

Over the past few years, progress has been achieved in identifying burnt forest
areas based on multispectral satellite Sentinel-2 (S2) data. In comparison to Landsat,
S2 has increased multispectral bands (with three unique red edge wavelengths), 20 m
spatial resolution (multispectral bands), and revisit period as short as 5days. S2 red-
edge spectral indices (Modified Simple Ratio, Chlorophyll Index, Normalized
Difference Vegetation Index) have been applied for discriminating four burn-severity
levels after wildfire (Fernandez-Manso et al. 2016). To differentiate between burnt
and unburnt areas, S2 bands (short and long shortwave infrared [SWIR] bands b11
and b12) and spectral indices (Mid-Infrared Burnt Index (MIRBI) and Normalized
Burnt Ratio 2 [NBR2]) have been examined and found to have the highest separabil-
ity index values (Huang et al. 2016; Roteta et al. 2019). A newly developed burnt area
index for S2 (BAIS2) has been presented to detect burnt areas and perform post-fire
mapping (Filipponi 2018). Potentially, these can distinguish S2 data as one of the
most powerful sources of information to discriminate vegetation components of burnt
areas and estimate their changes over time.

Although multispectral satellite data have been used actively in monitoring fire
burning, assessing suitable remote sensing data and methods for characterizing burnt
forest areas and evaluating their recovery dynamics were not fully explored (Ryu
et al. 2018). This study is directed to improving long-term post-fire environment
assessment. It proposes an original method for monitoring of damaged by fire forest
sites using Sentinel-2 satellite data. The method combines spectral and textural fea-
tures of land cover types inside post-fire study sites. Specific objectives are to 1) test
stability of the burnt area index for Sentinel-2 (BAIS2) for identification of burn in
study sites, 2) investigate the optimal feature combination for mapping land covers
inside study sites, and 3) assess and analyse dynamic in land covers of study sites.

2. Materials and methods
2.1. Study area

Four post-fire sites, which are selected for the study, are situated in the central part
of Serbia (Figure 1). Three sites (1-3) had previously been covered by artificially
established coniferous forest and the fourth was a natural beech forest. The forest
fires occurred on study sites from 2007 to 2015 (Tab 1). After fire, study sites have
been cleaned by cutting the remaining trees that were significantly damaged by fire.
Foresters did reforestation with pine seedlings which was not successful and spontan-
eous vegetation started to occupy burned and cleaned areas. The different temporal
scale was important for this study to estimate recovery after longer time periods since
forest fire occurred. Beside the conifer forests (sites 1-3) we were interested to test
the recovery dynamics in broadleaf forest (site 4). Succession stage of the study sites
can be described as a stage of intermediate species (Figure 2), where grasses, shrubs
and young deciduous are presented.

The sites varied in age from 20 to 50 years at the time of fire and ranged in alti-
tude from 440 to 750 m a.s.l. The sites are exposed to the sun for most of the day.
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Figure 1. Study area. Orange marks show location of study sites. Background is Sentinel-2 image
displayed in true color.

Average temperature and precipitation totals for the fire season (March-October) at
study sites are presented in Table 1. Borders of study sites were outlined based on
archival forest inventory materials and GoogleEarth satellite images before and after
fire. To assess the likely fire intensity on the study sites, we used fire danger class. It
was categorized based on fire weather index (FWI (Dowdy et al. 2009),) calculated
after the fire. FWI has 6 categories: very low (FWI < 5.2), low (5.2 <FWI < 11.2),
moderate (11.2 <FWI < 21.3), high (21.3 <FWI < 38), very high (38 <FWI < 50)
and extreme (FWI > 50). FWI values for our study sites corresponded to moderate,
high and very high fire danger class (Table 1).

2.2. Field data

Fieldwork was conducted during May-June 2019. It involved identifying land cover types
on four study sites: charring and sparse grass cover, charring and dense grass cover,
small bushes with charring, bushes with young broadleaf trees, forest (Figure 3a). At
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each selected location, at least one georeferenced picture was taken for each cardinal
point (North, East, South, and West). The pictures were used for assigning training and
validation samples for further satellite image classification (Table 2). Training samples
were used for model construction in classification process. Where each sample of the
training set was annotated with it’s appropriate class. Validation samples were used to
validate the classification accuracy.

2.3. Satellite Sentinel-2 imagery data

Satellite S2 imagery data (15 scenes) were downloaded from the Sentinels scientific
data hub (https://scihub.copernicus.eu/). Date of scenes are presented in Table 1.
Satellite S2 10 spectral bands were used in the study: B2 (0.490 um), B3 (0.560 pm),
B4 (0.665um), B5 (705um), B6 (0.740pm), B7 (0.783um), B8 (842um), BSA
(0.865 um), B11 (1610 um) and B12 (2.190 um). Scenes from 2017, 2018 and 2019
were available for downloading with processed Level-2A (bottom-of-atmosphere-
reflectance), and scenes from 2016 were downloaded with processed Level-1C (top-
of-atmosphere-reflectance). Reformatting of Level-1C data to Level-2A data was
performed in Sen2Cor processor (Main-Knorn et al. 2017).

2.4. Burned Area Index for Sentinel-2

Burned Area Index for Sentinel-2 (BAIS2) was used to identify charring on study
sites. It was computed for each study site and each S2 scene according to the follow-
ing formula (Filipponi 2018):

BAIS? — (1 B6*B7*BSA> B12—B8A ] (1)
B V B4 i <¢m + B8A * )

where B4 (0.665um), B6 (0.740 pm), B7 (0.783 um), B8A (0.865pum) and BI2
(2.190 um) are spectral bands of S2 image.

Vegetation indices differ greatly in terms of their sensitivity to various external fac-
tors. This may affect the spectral reflectance signatures of objects on the image and
the classification results. To avoid potential misclassification when using BAIS2 to
identify charring on study site, the index was tested for sensitivity to vegetation
period of satellite data acquisition. In our case, BAIS2 was tested to identify ‘charring
and sparse grass’ cover on study sites. BAIS2 was calculated for each S2 satellite scene
through the May-September vegetation period. Second coefficients in Chebyshev pol-
ynomials of the first kind (Mason and Handscomb 2002) were derived from the set
of BAIS2 values from May to September for study site land covers: charring and
sparse grass cover, charring and dense grass cover, small bushes with charring, bushes
with young broadleaf trees, forest, and artificial object (road). Differences between the
second coefficients in Chebyshev polynomials of land covers were examined using
statistical t-test.

BAIS2 was used as an input for automatic classification of study sites as a feature
to identify ‘charring and sparse grass’ class.
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Figure 2. Succession stages after fire. Succession stage of the study sites is marked in red.

2.5. Texture analysis

The use of textural information in image classification, apart from spectral data, can
significantly increase the accuracy of classification (Haralick et al. 1973). The best
results can be obtained by using a combination of spectral and textural data (Bekkari
et al. 2012; Kupidura 2019). Texture can be a distinctive feature of selected land cover
classes exhibiting significant spectral similarities. It has no unambiguous definition
(Bracewell 2000), which is why in the practice of digital image processing many dif-
ferent methods of texture analysis have been defined. For this study, Fourier trans-
form (Kupidura 2019) and computation of image statistics were applied for texture
characterizations of study sites.

Fourier transform is valuable for analysing the repetitive structure of image objects
(Gonzales and Woods 1992; Proisy et al. 2007). Fourier transform converts an image
into a two-dimensional function with two frequency components (horizontal and ver-
tical). Once the transformation is applied, the Fourier spectra define the image by
their components of phase and amplitude. A moving window is used to compute the
filtered values (i.e. components of phase and amplitude) for each pixel. In this study,
the optimal window size for Fourier transformation of S2 data was determined to be
16 x 16 pixels, that allowed identify basic texture elements, textels, of study site land
covers. Three coefficients of Fourier transform were selected from 16 x 16 possible
coefficients to characterize texture of study sites. These were: maximum amplitude,
where amplitude is the length of the complex vector; and two amplitudes of the 1%
coefficient and 10™ coefficient adjacent to the central one shifted by unity in Y and
in X, respectively. The maximum amplitude specified the difference between intensity
values. Amplitudes of the 1% coefficient and 10" coefficient were degrees of ‘blurring’
on the image texture. The ‘soft’ texture values might help to avoid misclassification
when texture and spectral features are together in image classification process.

S2 red edge spectral band (B6, 0.740 um) was used in the texture analysis, because
spectral reflectance of land covers had a maximum difference in the spectral region
0.740.0.865 pm (Figure 3b). The texture is formed by alternation of the grey scale in
the spatial position, such that there is a certain spatial relationship between two pixels
separated by a certain distance within the image. The statistical method included the
calculation of dispersion, percentile, and autocorrelation within each study site. The
metrics analysed the relationship between pixel pairs considering that each pixel
(except for those on the periphery of an image) had eight neighbouring pixels.
Dispersion described how spread out a pixel values were. Percentiles corresponded
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reflectance values from all class samples for each land cover class.
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within the distribution of pixel values on the image. In our case, the 5th percentile
was a value associated with the location within the data where 5% of data was below
that value. It was scaled with respect to the original image and allows simultaneous
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Table 2. Training and validation samples from fieldwork for study sites classification based on
Sentinel-2 data.

Study site land covers

Bushes with Charring with Charring with
Small bushes young broadleaf sparse grass dense Forest Forest
Samples with charring trees cover grass cover mixed * broadleaf
Training 10 8 6 8 5 4
Validation 8 6 3 6 3 2
Study site 1,234 2,34 1,234 1,234 1,24 4

*Forest mixed is broadleaf forest with small mixture of conifers.

analysis of small and large texture elements, textels. Autocorrelation function in
image analysis was used for recognition of textels or textel boundaries.

Computation and visualization of texture features was performed with specific pro-
gram code, written by the paper authors. Visualizations of texture features for study
site 1 is presented in Figure 4. The texture features were used as an input for auto-
matic classification of study sites.

2.6. Classification of study sites

Classification steps are demonstrated on flow chart (Figure 5). Support vector
machine (SVM) classifier implemented in EnMAP-box plug-in (van der Linden et al.
2015) was applied in the study. The algorithm is based on statistical learning theories
where a linear discriminant function is established by constructing the classification
surface to ensure the maximum distance between the samples (Cristianini and
Shawe-Taylor 2000).

We used four sets of features as classification inputs to classify study sites:

S2 bands (hereinafter, bands 2, 3, 4, 5, 6, 7, 8a, 11, 12),

S2 bands with BAIS2,

S2 bands with BAIS2 and texture by Fourier transform, and

S2 bands with BAIS2 and texture by image statistic computation.

To compare classification results from four sets of features, Kappa coefficient and
overall classification accuracy were computed. To classify study sites for 2016, 2017
and 2018 we used a set of features that demonstrated the most accurate classification
results from 2019. Due to the lack of field data for 2016, 2017 and 2018, the reliabil-
ity of classification referring to 2016, 2017 and 2018 years was estimated based on
analysis of spectral signatures of each class on the original image. Spectral similarity
algorithm was used for scenes from 2016, 2017 and 2018 to detect occurrence of the
reference spectra signatures. The algorithm compared spectra of classes from 2016,
2017 and 2018 with reference spectra from 2019.The output of the algorithm was a
ranked score for each of the reference spectra from 1 to 0, where 1 indicated the clos-
est match and indicated higher confidence in the spectral similarity. To estimate reli-
ability of classification from 2016, 2017 and 2018 the reference spectra score of 0.8
and higher was considered.
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Figure 4. Visualizations of texture features for study site 1: a) red—green-blue (RGB) Sentinel-2
data; Fourier transform coefficients as b) maximum amplitude, c) 1st coefficient, and d) 10th coeffi-
cient; and image statistics as e) autocorrelation, f) percentile, and g) dispersion. Scale of values for
texture features is from 0 to 1.

2.7. Dynamic in study sites land covers

Dynamics in study sites land covers were calculated using percentage of each class from
classification result for 2016, 2017, 2018 and 2019. The Change function was used to
enumerate the differences between two classified raster datasets for land cover change
analysis in geographic information system. Relative difference computation method was
applied. We used pair of classified raster: 2016 and 2017, 2017 and 2018, 2018 and 2019.
The output raster datasets contained values with ‘no change’ (0) and ‘change’ (all other
values) for each compared pair.

3. Results
3.1. Spectra analysis of study sites

The spectra of study sites land covers were analysed using the reference spectra of
undamaged forest stands in the spectral interval of 0.492-2.202 um. There was a
marked reduction in near-infrared surface reflectance and rise in visible surface
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Figure 5. Flow chart of classification steps.

reflectance in land covers with mixtures of charring and dense grass cover, charring
and sparse grass cover, and small bushes with charring (Figure 3b).

3.2. BAIS2 stability across the vegetation period

Analysis of the second coefficient of Chebyshev polynomials T, (x) of BAIS2 for
main land covers (charring with sparse grass cover, charring with dense grass cover,
small bushes with charring, bushes and young broadleaf trees, forest, and road) on
the S2 satellite scenes showed that differences between T, (x) of charring with sparse
grass cover and T, (x) of other land covers were statistically significant for the
May-September vegetation period (p-values ranged from 0.004 to 0.008, o =0.01)
(Table 3). BAIS2 demonstrated a stable identification of charring on all analyzed sat-
ellite scenes acquired in various dates of vegetation period.

3.3. Classification of study sites

Study sites were classified into four (study sites 1, 3), five (study site 2) and six classes
(study site 4). Each site contained classes of: charring and sparse grass cover, charring
and dense grass cover, small bushes with charring. Forest cover was identified in study
sites 1, 2 and 4. Study site 4 had two forest classes: broadleaved (beech) and mixture
(beech with small enclaves of pine) (Figures 6-9). Confusion matrix of classified land
cover types demonstrates true classes (columns) and classifier predictions (Table 4).
The diagonal elements (bold values) represent the number of points for which the pre-
dicted label is equal to the true label, while off-diagonal elements are those that are mis-
labeled by the classifier. A notable misclassification belong to the classes - charring and
sparse grass cover, and charring and dense grass cover — which were classified one as
another (about 16%) on study sites 2, 3 and 4. Forest (about 20%) was misclassified with
class of small bushes with charring on study site 2. Other classes had high true positive
rate with misclassification no more than 6%. Overall classification accuracy and Kappa
coefficient for four classification inputs and for each study site are shown in Table 5.
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Table 3. Second coefficient of Chebyshev polynomials for post-fire forest scar land covers.

Image land cover

Charring and Bushes and
Charring and sparse dense grass Small bushes young broadleaf
grass cover cover with charring Forest trees Road
T, X)* —0.08 —0.07 —0.11 —0.28 —0.32 —0.06
p-value - 0.0091 0.008 0.004 0.004 0.0003

T, (x) is second coefficient of Chebyshev polynomials of the first kind. P-value is a result of a statistical t-test: differ-
ences between T, (x) of charring with sparse grass cover and T, (x) of other land covers.

The most accurate classification result for study site 1 was distinguished when the classi-
fication input contained S2 bands and BAIS2. The most accurate classification results
for study sites 2 and 3 were distinguished when the classification input contained a tex-
ture by Fourier transform. Overall accuracy (0.78) and Kappa (0.77) were the same
when the classification input contained S2 bands with BAIS2 and a texture by Fourier
transform for study site 4. Classification with S2 bands, BAIS2 and texture by statistics
demonstrated less accurate overall accuracy and Kappa coefficient for all study sites
than classification with texture by Fourier transform.

Within 4 years of observations, vegetation dynamic were detected for all study sites
(Figure 10). The coniferous plantations (sites 1, 2, 3) showed insignificant or absent
(site 3) recovery of Austrian pine, the dominant species prior to the fire event.
Instead, the recovery was generally dominated by other vegetation classes, with a spe-
cific intensity apparently related to time since the fire event and extent of the fire.

4. Discussion
4.1. Spectra analysis of study sites

When vegetation is burnt, there is a drastic reduction in visible-to-near-infrared sur-
face reflectance (i.e. 0.4-1.3 pum) that is associated with the charring and removal of
vegetation (Eva and Lambin 1998; Cristianini and Shawe-Taylor 2000). The spectra
land covers with mixtures of charring and dense grass cover, charring and sparse
grass cover, and small bushes with charring in our study have markedly lower reflect-
ance in the near-infrared part of the electromagnetic spectrum (0.72-1.3 pm) com-
pared to land covers of bushes with young broadleaf trees, and forest. Charring and
dense grass cover, charring and sparse grass cover, and small bushes with charring
are characterized by gradual reflectance increase in the 0.5-0.7 um part of the electro-
magnetic spectrum, whereas common vegetation spectra fluctuate up and go down
within this part of the electromagnetic spectrum. Variation in spectral response of
study sites land covers can be explained as a function of burn severity (White et al.
1996). The larger the difference in spectra of land covers within a burnt area, the
greater the difference in fire damage.

4.2. BAIS2 stability

Analysis of BAIS2 for land covers of study sites showed that BAIS2 can differentiate
class charring with sparse and dense grass cover from other land covers through the
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Figure 6. Classification results for study site 1.
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Figure 7. Classification results for study site 2.

analyzed May-September vegetation period. Our BAIS2 results complement the exist-
ing findings from testing of widely used vegetation indices for their burn detection
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Figure 8. Classification results for study site 3.

capabilities (Eva and Lambin 1998). Although Brightness and Wetness indices
revealed long-term effects of fire in vegetated land (Eva and Lambin 1998), class sep-
arability by most of tested vegetation indices already was generally poor after one
post-fire growing season. Meanwhile, BAIS2 separated burnt forest area after as many
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Figure 9. Classification results for study site 4.

as nine post-fire growing seasons in our study. Our result demonstrated a stability of
BAIS2 to identify a burnt area independently to vegetation period of satellite data
acquisition.
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Table 4. Confusion matrices resulting from classifying test pixels.
a) Study site 1

Small bushes with Charring with dense
charring grass cover Forest Row total
Small bushes with charring 705 18 91 814
Charring with dense grass cover 2 129 1 132
Forest 54 7 194 255
Column total 761 154 286 1201

Classification input is Sentinel-2 bands, BAIS2 and texture (2019).

b) Study site 2

Bushes and
young Charring and ~ Charring and
broadleaf Small bushes sparse dense Row
trees with charring  grass cover grass cover  Forest  total
Bushes and young broadleaf trees 2867 822 0 9 91 3789
Small bushes with charring 806 2752 3 6 85 3652
Charring and sparse grass cover 1 0 399 4 0 404
Charring and dense grass cover 53 25 417 1313 I} 1819
Forest 9 224 0 2 812 1047
Column total 3736 3823 819 1334 999 10,711
) Study site 3
Bushes and Charring and Charring and
young broadleaf Small bushes sparse grass dense grass Row
trees with charring cover cover total
Bushes and young broadleaf trees 846 141 0 20 1007
Small bushes with charring 149 703 12 18 882
Charring and sparse grass cover 1 3 182 7 203
Charring and dense grass cover 0 4 8 49 61
Column total 1006 851 202 94 2153
d) Study site 4
Bushes and young Charring and  Charring and
broadleaf Small bushes  sparse grass dense Forest Forest Row
trees with charring cover grass cover  mixed broadleaf total
Bushes and young 131 25 0 0 7 8 169
broadleaf trees
Small bushes with 224 2031 0 3 12 86 2356
charring
Charring and sparse 8 0 158 23 0 2 191
grass cover
Charring and dense 16 1 21 171 4 0 213
grass cover
Forest mixed 12 13 0 5 162 35 227
Forest broadleaf 0 26 3 7 201 1287 1524
Column total 391 2096 182 209 386 1416 4680

The diagonal elements (bold) represent the number of points for which the predicted label is equal to the true
label, while off-diagonal elements are those that are mislabelled by the classifier.

4.3. Classification of burnt forest areas

The success of classification is determined by its ability to identify the feature of an
object that is most useful for that object’s discrimination. Study sites were classified
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Table 5. Classification accuracy.

S2 bands with S2 bands with

S2 bands BAIS2 and BAIS2 and

Accuracy measure Study site S2 bands with BAIS2 texture FT texture S
Overall accuracy 1 0.72 0.76 0.75 0.74
2 0.74 0.77 0.83 0.81
3 0.75 0.80 0.86 0.83
4 0.69 0.78 0.78 0.77
Kappa coefficient 1 0.68 0.74 0.72 0.72
2 0.72 0.75 0.80 0.80
3 0.73 0.78 0.84 0.80
4 0.67 0.77 0.77 0.76

Bold values indicate the highest accuracy measure for specific study site.
S2 is Sentinel-2 image, BAIS2 is Burned Area Index for Sentinel-2, FT is texture by Fourier transform, S is texture by
image statistics computation.

for four (study site 1, study site 3), five (study site 2) and six (study site 4) classes.
Overall accuracy ranged from 0.69 to 0.86 and Kappa coefficient from 0.67 to 0.84,
depending on input features used in classification (Table 5).

In general, our results are comparable with those from recent studies. Mitri and
Gitas (Trigg and Flasse 2000) separated five classes in burnt forest areas on the Greek
island of Thasos 14 and 18years after fire from Hyperion satellite image using an
object-based classification approach. Those classes were ‘brutia mature’, ‘nigra
mature’, ‘brutia regeneration’, ‘nigra regeneration’ and ‘other vegetation’. Applying an
object-based classification from SPOT and ERS satellite images for the island of
Thasos, Polychronaki et al. (Fornacca et al. 2018) assessed overall accuracy to be 0.76
and Kappa coefficient 0.69. Post-fire land covers were mapped with 0.90 overall
accuracy and 0.84 Kappa coefficient. Four land cover types (low-vegetation, artificial
areas and bare land, broadleaf, and mixed class with shrubs and trees) were classified
on burnt forest areas 19 and 23 years after fire.

In detail, the classification from our study based on satellite S2 spectral bands
revealed the lowest overall accuracy (from 0.69 to 0.75) and Kappa coefficients (from
0.67 to 0.73) for all study sites. Stronger results were demonstrated for classification
based on combination of S2 bands and BAIS2, where overall accuracy ranged from
0.76 to 0.80 and Kappa coefficient from 0.74 to 0.78. Approaches using S2 spectral
bands in combination with various vegetation indices (e.g. NBR, BAIS2, Mid Infrared
Burn Index [MIRBI]) were successfully used in identification of burnt forest areas in
Italy (Meng et al. 2017) and in distinguishing burnt pixels in Sub-Saharan Africa
(Roteta et al. 2019). These studies, however, identified burnt forest areas without fur-
ther classification of land cover types inside a burn. From our knowledge, we have
identified only two recent publications describing use of Landsat or S2 spectral index
approaches for estimating burn severity inside burnt area (Ferndndez-Manso et al.
2016; Fornacca et al. 2018). Burn-severity discrimination was classified into four
severity levels from S2 red-edge spectral indices after vegetation wildfire in Spain
(Fernandez-Manso et al. 2016). While spectral index approaches applied for estimat-
ing burn severity in Greece using Normalized Difference Moisture Index (NDVI),
Normalized Difference Moisture Index (NDMI), and Normalized Burn Ratio (NBR)
from Landsat TM data were indicated to contain inaccuracies, a revised index design
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Figure 10. Dynamic in study site land covers.

or alternative methods could improve the estimation of burn severity (Mitri and
Gitas 2010).

Classification based on combination of S2 bands, BAIS2, and texture by Fourier
transform was the most accurate in our study and showed the best results for study site
2 (overall accuracy of 0.83 and Kappa coefficient of 0.80) and for study site 3 (overall
accuracy of 0.86 and Kappa coefficient of 0.84). The relatively high classification accur-
acy for study site 2 can be explained by its being the largest area (188.5ha) among the
four. The texture algorithm worked more effectively here due to the presence of more
16 x 16 window size pixels for texture analysis. In the case of study site 3, classification
accuracy results can be explained by the greater difference in texture of charring with
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grass cover due to the high fire danger class (Table 1) that serves as a proxy of fire inten-
sity in our study. Study site 4 was classified with equal accuracy using two sets of classi-
fication inputs: S2 bands, BAIS2, and texture by Fourier transform; as well as S2 bands
and BAIS2 (overall accuracy of 0.78, Kappa of 0.77). This may be a consequence of too-
small differences in texture within burn land covers 9 years after fire, and these were not
sensitive to the proposed Fourier transform method.

Adding the texture by image statistic computation into a combination of S2 bands
and BAIS2 either reduced the classification accuracy (as measured by overall accuracy
for all study sites) or left the accuracy unchanged (as seen in the Kappa coefficient
for study sites 1 and 2) compared to classification results when adding the texture by
Fourier transform. Similarly, statistical texture features indicated lower overall accur-
acy (0.87) and Kappa coefficient (0.83) compared to classification using grey level co-
occurrence matrix as the texture feature (0.92 and 0.87, respectively) in land cover
classification from QuickBird image with Support Vector Machine classifier
(Polychronaki et al. 2014).

Based on our findings, study site area and post-fire period influence on the classifi-
cation accuracy when texture feature is applying. Generally, the classification of land
covers in the study sites while including texture feature was more accurate than was
classification without texture feature. This finding is in accordance with results from
recent research by Kupidura (Kupidura 2019), where the efficiency of selected texture
features was shown in the process of land use land cover RF (random forest) classifi-
cation from satellite S2 data. Classification with texture analysis from our study were
less accurate (overall accuracy ranging from 0.78 to 0.86 and Kappa coefficient from
0.77 to 0.83) than classification with texture analysis from Kupidura (Kupidura 2019)
overall accuracy ranging from 0.92 to 0.97 and Kappa coefficient from 0.90 to 0.96),
where textural differences of land cover classes were greater.

4.4. Dynamics in land cover classes of study sites

Dynamics in land cover classes of study sites are demonstrated in bar charts (Figure
10). Natural regeneration of pine was not observed on study sites, even though sites
1, 2, and 3 had been dominated by Austrian pine before the fire. Establishment of
coniferous species plantations in areas naturally dominating by deciduous broadleaf
forests was a widely used practice in Serbia in the past (Tomié et al. 2011) as it was
the case on our study area. However, the indigenous vegetation on the sites are oaks
(Table 1) and this might be the reason for the observed better regeneration of broad-
leaf species. Also, it is known that broadleaf species have post-fire ecological strat-
egies, such as re-sprouting ability, which is a key trait to overcome such disturbances
as fires (Clarke et al. 2013). According to Mekonnen et al. (Mekonnen et al. 2019),
rapid nitrogen mineralization after fire might be more beneficial for the broadleaf
than coniferous tree species in the first 5years after fire.

The intensity of vegetation recovery after a fire obviously relates to fire intensity
(fire danger class), burn severity, time elapsed since the fire and area of burnt.
Specifically, the higher fire intensity, the more time is needed for vegetation recovery
(Clarke et al. 2013; Mekonnen et al. 2019). This can be well documented by the
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vegetation dynamics in our study sites. Study site 1 had the greatest increase in small
bushes with charring class compared to the other sites for the study period. This site
was 6years post fire and its fire danger class indicating fire intensity was very high.
The dynamic results of study site 1 confirmed findings from similar studies, where
recovery was greater for higher severity areas and vegetation recovery dynamics were
generally greatest for several years following fire (Epting and Verbyla 2005, Bright
et al. 2019). In contrast, recovery at study site 2 was much slower compared to in
study site 1, even though the fire events at both occurred in the same year, 2012. Site
recovery dynamics following forest fires are strongly influenced by the area burned
by fire, type of vegetation burnt, neighboring vegetation type, and post-fire recovery
time (Viana-Soto et al. 2017). The study site 2 is seven times larger than study site 1,
and therefore the effect of surrounding unburnt vegetation on the recovery process is
much weaker (Nathan and Muller-Landau 2000). In addition, southern slopes with
drier conditions contribute to slower regeneration (Cai et al. 2013) and neighboring
with burn conifer vegetation contributes to slower regeneration of burnt vegetation
(Liu 2016).

Study site 3 had the largest proportion of charring with sparse grass cover class
among all sites for the study period. That was due to the shorter post-fire period
according to the date of the satellite data analysis (1year after fire). This can be
explained by high representation of grasses and herbaceous species, which usually
appear first and recover quickly following the ‘mineral flush’ that occurs after fire
(Christensen 1994). Study site 4 had little presence of charring with sparse grass cover
class due to overgrowing vegetation by the date of the satellite data analysis (9 years
after fire).

The fire impact categories can be assigned based on our study findings to describe
the forest ecosystem response after fire from satellite data: minor (class forest), minor
to moderate (class bushes with young broadleaf trees), moderate (class small bushes
with charring), moderate to strong (class charring with dense grass cover) and strong
(class charring with sparse grass cover). The suggested fire impact categories poten-
tially can improve assessment of fire effects from forest inventory.

The information regarding post-fire vegetation dynamics in the study sites can be
useful for continuous monitoring and assessment of forest succession. Hence, the
method can support planning of forest measures to aid in effective restoration of for-
est cover after fire events.

5. Conclusions

The proposed method for monitoring post-fire forest scars combined spectral and
textural features of land cover types inside a post-fire study sites. The optimal feature
combination for mapping post-fire land cover types was investigated. Stability of
BAIS2 index within the analysed May-September vegetation period was tested.

Our study revealed that classification results were significantly improved by taking
into consideration the texture of burnt forest area. The most accurate classification
method for characterizing study sites was based on a combination of Sentinel-2
bands, BAIS2, and texture by Fourier transform. This methodological approach was
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successfully tested to assess vegetation recovery in contrasting post-fire study sites.
The proposed method can be considered as an improvement of recent studies classi-
fying the post-fire scars. The method could be applied also to burnt areas in temper-
ate zone and can help in assessing vegetation response after fire and aid restoration
efforts. The study and findings can support planning of forest management measures
needed to effectively restore forest cover.
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