Czech Republic

Link to this page

Czech Republic

Authors

Publications

Host-associated divergence in the activity of digestive enzymes in two populations of the gypsy moth Lymantria dispar (Lepidoptera: Erebidae)

Lazarević, Jelica; Janković-Tomanić, Milena; Savković, Uroš; Đorđević, Mirko; Milanović, Slobodan; Stojković, Biljana

(2017)

TY  - JOUR
AU  - Lazarević, Jelica
AU  - Janković-Tomanić, Milena
AU  - Savković, Uroš
AU  - Đorđević, Mirko
AU  - Milanović, Slobodan
AU  - Stojković, Biljana
PY  - 2017
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/858
AB  - The gypsy moth is a generalist insect pest with an extremely wide host range. Adaptive responses of digestive enzymes are important for the successful utilization of plant hosts that differ in the contents and ratios of constituent nutrients and allelochemicals. In the present study, we examined the responses of alpha-amylase, trypsin, and leucine aminopeptidase to two tree hosts (suitable oak, Quercus cerris, and unsuitable locust tree, Robinia pseudoacacia) in the fourth, fifth, and sixth instars of gypsy moth larvae originating from oak and locust tree forest populations (hereafter assigned as Quercus and Robinia populations, respectively). Gypsy moths from the Robinia forest had been adapting to this unsuitable host for more than 40 generations. To test for population-level host plant specialization, we applied a two-population x two-host experimental design. We compared the levels, developmental patterns, and plasticities of the activities of enzymes. The locust tree diet increased enzyme activity in the fourth instar and reduced activity in advanced instars of the Quercus larvae in comparison to the oak diet. These larvae also exhibited opposite developmental trajectories on the two hosts, i. e. activity increased on the oak diet and decreased on the locust tree diet with the progress of instar. Larvae of the Robinia population were characterized by reduced plasticity of enzyme activity and its developmental trajectories. In addition, elevated trypsin activity in response to an unsuitable host was observed in all instar larvae of the Robinia population, which demonstrated that Robinia larvae had an improved digestive performance than did Quercus larvae.
T2  - Entomological Science
T1  - Host-associated divergence in the activity of digestive enzymes in two populations of the gypsy moth Lymantria dispar (Lepidoptera: Erebidae)
EP  - 194
IS  - 1
SP  - 189
VL  - 20
DO  - 10.1111/ens.12250
UR  - conv_1252
ER  - 
@article{
author = "Lazarević, Jelica and Janković-Tomanić, Milena and Savković, Uroš and Đorđević, Mirko and Milanović, Slobodan and Stojković, Biljana",
year = "2017",
abstract = "The gypsy moth is a generalist insect pest with an extremely wide host range. Adaptive responses of digestive enzymes are important for the successful utilization of plant hosts that differ in the contents and ratios of constituent nutrients and allelochemicals. In the present study, we examined the responses of alpha-amylase, trypsin, and leucine aminopeptidase to two tree hosts (suitable oak, Quercus cerris, and unsuitable locust tree, Robinia pseudoacacia) in the fourth, fifth, and sixth instars of gypsy moth larvae originating from oak and locust tree forest populations (hereafter assigned as Quercus and Robinia populations, respectively). Gypsy moths from the Robinia forest had been adapting to this unsuitable host for more than 40 generations. To test for population-level host plant specialization, we applied a two-population x two-host experimental design. We compared the levels, developmental patterns, and plasticities of the activities of enzymes. The locust tree diet increased enzyme activity in the fourth instar and reduced activity in advanced instars of the Quercus larvae in comparison to the oak diet. These larvae also exhibited opposite developmental trajectories on the two hosts, i. e. activity increased on the oak diet and decreased on the locust tree diet with the progress of instar. Larvae of the Robinia population were characterized by reduced plasticity of enzyme activity and its developmental trajectories. In addition, elevated trypsin activity in response to an unsuitable host was observed in all instar larvae of the Robinia population, which demonstrated that Robinia larvae had an improved digestive performance than did Quercus larvae.",
journal = "Entomological Science",
title = "Host-associated divergence in the activity of digestive enzymes in two populations of the gypsy moth Lymantria dispar (Lepidoptera: Erebidae)",
pages = "194-189",
number = "1",
volume = "20",
doi = "10.1111/ens.12250",
url = "conv_1252"
}
Lazarević, J., Janković-Tomanić, M., Savković, U., Đorđević, M., Milanović, S.,& Stojković, B.. (2017). Host-associated divergence in the activity of digestive enzymes in two populations of the gypsy moth Lymantria dispar (Lepidoptera: Erebidae). in Entomological Science, 20(1), 189-194.
https://doi.org/10.1111/ens.12250
conv_1252
Lazarević J, Janković-Tomanić M, Savković U, Đorđević M, Milanović S, Stojković B. Host-associated divergence in the activity of digestive enzymes in two populations of the gypsy moth Lymantria dispar (Lepidoptera: Erebidae). in Entomological Science. 2017;20(1):189-194.
doi:10.1111/ens.12250
conv_1252 .
Lazarević, Jelica, Janković-Tomanić, Milena, Savković, Uroš, Đorđević, Mirko, Milanović, Slobodan, Stojković, Biljana, "Host-associated divergence in the activity of digestive enzymes in two populations of the gypsy moth Lymantria dispar (Lepidoptera: Erebidae)" in Entomological Science, 20, no. 1 (2017):189-194,
https://doi.org/10.1111/ens.12250 .,
conv_1252 .
7
7
7