Ministry of Science, Technological Development and Innovation of the Republic of Serbia, institutional funding - 200135 (University of Belgrade, Faculty of Technology and Metallurgy)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200135/RS//

Ministry of Science, Technological Development and Innovation of the Republic of Serbia, institutional funding - 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (en)
Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije, institucionalno finansiranje - 200135 (Univerzitet u Beogradu, Tehnološko-metalurški fakultet) (sr_RS)
Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200135 (Универзитет у Београду, Технолошко-металуршки факултет) (sr)
Authors

Publications

One-Pot Syntheses of PET-Based Plasticizer and Tetramethyl Thiuram Monosulfide (TMTS) as Vulcanization Accelerator for Rubber Production

Milentijević, Goran; Milošević, Milena; Milojević, Svetomir; Marković, Smiljana; Rančić, Milica; Marinković, Aleksandar; Milosavljević, Milutin

(2023)

TY  - JOUR
AU  - Milentijević, Goran
AU  - Milošević, Milena
AU  - Milojević, Svetomir
AU  - Marković, Smiljana
AU  - Rančić, Milica
AU  - Marinković, Aleksandar
AU  - Milosavljević, Milutin
PY  - 2023
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1427
AB  - Styrene-butadiene (SBR) and acrylonitrile-butadiene (NBR) rubber blends with tetramethyl thiuram disulfide (TMTD) and tetramethyl thiuram monosulfide (TMTS) accelerators and environmentally friendly plasticizers, obtained from PET recycling and biobased resources (LA/PG/PET/EG/LA), were prepared. The mechanical properties of the obtained rubber products were tested and compared with those of commercial dioctyl terephthalate (DOTP). TMTS was prepared by simple and efficient one-pot synthesis from dimethylamine, carbon disulfide, potassium cyanide, and ammonium chloride as catalysts in recycled isopropanol/water azeotrope as solvent. In a comparative study, methoxide, ethoxide, iodide, and amide ions were also used. The two-step reaction mechanism of TMTS synthesis involves the oxidation of the amine salt of dimethyldithiocarbamic acid to TMTD by hydrogen peroxide and sulfur elimination from the TMTD disulfide bond. Potassium cyanide appears to be the most efficient nucleophile. The simplicity of operation, mild reaction conditions, solvent recycling, high yields, and applicability to the industrial level are the advantages of this process. Shore hardness, tensile strength, and compression test results of vulcanized blends before and after aging showed similar properties for both accelerators, while somewhat better results were obtained with LA/PG/PET/EG/LA plasticizer.
T2  - Processes
T1  - One-Pot Syntheses of PET-Based Plasticizer and Tetramethyl Thiuram Monosulfide (TMTS) as Vulcanization Accelerator for Rubber Production
IS  - 4
VL  - 11
DO  - 10.3390/pr11041033
UR  - conv_1699
ER  - 
@article{
author = "Milentijević, Goran and Milošević, Milena and Milojević, Svetomir and Marković, Smiljana and Rančić, Milica and Marinković, Aleksandar and Milosavljević, Milutin",
year = "2023",
abstract = "Styrene-butadiene (SBR) and acrylonitrile-butadiene (NBR) rubber blends with tetramethyl thiuram disulfide (TMTD) and tetramethyl thiuram monosulfide (TMTS) accelerators and environmentally friendly plasticizers, obtained from PET recycling and biobased resources (LA/PG/PET/EG/LA), were prepared. The mechanical properties of the obtained rubber products were tested and compared with those of commercial dioctyl terephthalate (DOTP). TMTS was prepared by simple and efficient one-pot synthesis from dimethylamine, carbon disulfide, potassium cyanide, and ammonium chloride as catalysts in recycled isopropanol/water azeotrope as solvent. In a comparative study, methoxide, ethoxide, iodide, and amide ions were also used. The two-step reaction mechanism of TMTS synthesis involves the oxidation of the amine salt of dimethyldithiocarbamic acid to TMTD by hydrogen peroxide and sulfur elimination from the TMTD disulfide bond. Potassium cyanide appears to be the most efficient nucleophile. The simplicity of operation, mild reaction conditions, solvent recycling, high yields, and applicability to the industrial level are the advantages of this process. Shore hardness, tensile strength, and compression test results of vulcanized blends before and after aging showed similar properties for both accelerators, while somewhat better results were obtained with LA/PG/PET/EG/LA plasticizer.",
journal = "Processes",
title = "One-Pot Syntheses of PET-Based Plasticizer and Tetramethyl Thiuram Monosulfide (TMTS) as Vulcanization Accelerator for Rubber Production",
number = "4",
volume = "11",
doi = "10.3390/pr11041033",
url = "conv_1699"
}
Milentijević, G., Milošević, M., Milojević, S., Marković, S., Rančić, M., Marinković, A.,& Milosavljević, M.. (2023). One-Pot Syntheses of PET-Based Plasticizer and Tetramethyl Thiuram Monosulfide (TMTS) as Vulcanization Accelerator for Rubber Production. in Processes, 11(4).
https://doi.org/10.3390/pr11041033
conv_1699
Milentijević G, Milošević M, Milojević S, Marković S, Rančić M, Marinković A, Milosavljević M. One-Pot Syntheses of PET-Based Plasticizer and Tetramethyl Thiuram Monosulfide (TMTS) as Vulcanization Accelerator for Rubber Production. in Processes. 2023;11(4).
doi:10.3390/pr11041033
conv_1699 .
Milentijević, Goran, Milošević, Milena, Milojević, Svetomir, Marković, Smiljana, Rančić, Milica, Marinković, Aleksandar, Milosavljević, Milutin, "One-Pot Syntheses of PET-Based Plasticizer and Tetramethyl Thiuram Monosulfide (TMTS) as Vulcanization Accelerator for Rubber Production" in Processes, 11, no. 4 (2023),
https://doi.org/10.3390/pr11041033 .,
conv_1699 .
1
1
1

Vatrootporni kompoziti na bazi akril-funkcionalizovanog lignina i poliesterske smole dobijene od otpadnog poli(etilen tereftalata)

Knežević, Nataša; Jovanović, Aleksandar; Bošnjaković, Jovan; Milošević, Milena; Rančić, Milica; Marinković, Aleksandar; Gržetić, Jelena; Gamoudi, Houda

(Vojnotehnički institut, Beograd, 2022)

TY  - JOUR
AU  - Knežević, Nataša
AU  - Jovanović, Aleksandar
AU  - Bošnjaković, Jovan
AU  - Milošević, Milena
AU  - Rančić, Milica
AU  - Marinković, Aleksandar
AU  - Gržetić, Jelena
AU  - Gamoudi, Houda
PY  - 2022
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1356
AB  - U ovom radu ispitivan je potencijal korišćenja akril-funkcionalizovanog kraft lignina (AKL) u smanjenju zapaljivosti polimernih kompozita na bazi recikliranih nezasićenih poliesterskih smola (NZPS). Akrilna funkcionalizacija kraft lignina je izvedena direktnom esterifikacijom slobodnih polifenolnih grupa sa akriloil hloridom, nakon čega je AKL umešan u NZP smolu sintetizovanu od poliola dobijenih katalitičkom depolimerizacijom otpadnog poli(etilen tereftalata). AKL je homogenizovan sa NZPS pri različitim masenim udelima: 2,5, 5,0, 7,5 i 12,5 mas.%. Strukturne i dinamičko-mehaničke karakteristike akril-funkcionalizovanog kraft lignina i kompozita određene su primenom FTIR spektroskopije, dinamičkomehaničke analize (DMA) i testova jednoosnog zatezanja. Proučavan je uticaj funkcionalizacije i masenog udela AKL na zatezna i termička svojstva NZPS. Vatrootporna svojstva kompozita su ispitivana prema standardnoj UL-94V metodi, na osnovu koje je kompozit sa 12,5 tež. % akril-funkcionalizovanog lignina dostigao najvišu kategorija toplotno otpornih materijala.
AB  - This paper investigates the using potential of acryl-functionalized kraft lignin (AKL) in reducing the flammability of polymer composites based on recycled unsaturated polyester resins (UPR). Acryl functionalization of kraft lignin was performed by direct esterification of free polyphenolic groups with acryloyl chloride, after what, the AKL was blended in UPR resin synthesized from the polyols obtained by catalytic depolymerization of waste poly(ethylene terephthalate). The AKL was homogenized in UPR resin in different weight ratios: 2.5, 5.0, 7.5, and 12.5 wt.%. Structural and dynamic-mechanical characteristics of acryl-functionalized kraft lignin and composites were determined using FTIR spectroscopy, dynamicmechanical analysis (DMA), and tensile tests. The influence of functionalization and mass fraction of AKL on tensile and thermal properties of UPR resin was studied. The thermal properties of the composite were tested according to the standard UL-94 method, based on which the highest category of heat-resistant materials is a composite with 12.5 wt.% acylfunctionalized lignin.
PB  - Vojnotehnički institut, Beograd
T2  - Scientific Technical Review
T1  - Vatrootporni kompoziti na bazi akril-funkcionalizovanog lignina i poliesterske smole dobijene od otpadnog poli(etilen tereftalata)
T1  - Fire-resistant composites based on acrylic-functionalized lignin and polyester resin obtained from waste poly(ethylene terephthalate)
EP  - 37
IS  - 2
SP  - 32
VL  - 72
DO  - 10.5937/str2202032K
UR  - conv_736
ER  - 
@article{
author = "Knežević, Nataša and Jovanović, Aleksandar and Bošnjaković, Jovan and Milošević, Milena and Rančić, Milica and Marinković, Aleksandar and Gržetić, Jelena and Gamoudi, Houda",
year = "2022",
abstract = "U ovom radu ispitivan je potencijal korišćenja akril-funkcionalizovanog kraft lignina (AKL) u smanjenju zapaljivosti polimernih kompozita na bazi recikliranih nezasićenih poliesterskih smola (NZPS). Akrilna funkcionalizacija kraft lignina je izvedena direktnom esterifikacijom slobodnih polifenolnih grupa sa akriloil hloridom, nakon čega je AKL umešan u NZP smolu sintetizovanu od poliola dobijenih katalitičkom depolimerizacijom otpadnog poli(etilen tereftalata). AKL je homogenizovan sa NZPS pri različitim masenim udelima: 2,5, 5,0, 7,5 i 12,5 mas.%. Strukturne i dinamičko-mehaničke karakteristike akril-funkcionalizovanog kraft lignina i kompozita određene su primenom FTIR spektroskopije, dinamičkomehaničke analize (DMA) i testova jednoosnog zatezanja. Proučavan je uticaj funkcionalizacije i masenog udela AKL na zatezna i termička svojstva NZPS. Vatrootporna svojstva kompozita su ispitivana prema standardnoj UL-94V metodi, na osnovu koje je kompozit sa 12,5 tež. % akril-funkcionalizovanog lignina dostigao najvišu kategorija toplotno otpornih materijala., This paper investigates the using potential of acryl-functionalized kraft lignin (AKL) in reducing the flammability of polymer composites based on recycled unsaturated polyester resins (UPR). Acryl functionalization of kraft lignin was performed by direct esterification of free polyphenolic groups with acryloyl chloride, after what, the AKL was blended in UPR resin synthesized from the polyols obtained by catalytic depolymerization of waste poly(ethylene terephthalate). The AKL was homogenized in UPR resin in different weight ratios: 2.5, 5.0, 7.5, and 12.5 wt.%. Structural and dynamic-mechanical characteristics of acryl-functionalized kraft lignin and composites were determined using FTIR spectroscopy, dynamicmechanical analysis (DMA), and tensile tests. The influence of functionalization and mass fraction of AKL on tensile and thermal properties of UPR resin was studied. The thermal properties of the composite were tested according to the standard UL-94 method, based on which the highest category of heat-resistant materials is a composite with 12.5 wt.% acylfunctionalized lignin.",
publisher = "Vojnotehnički institut, Beograd",
journal = "Scientific Technical Review",
title = "Vatrootporni kompoziti na bazi akril-funkcionalizovanog lignina i poliesterske smole dobijene od otpadnog poli(etilen tereftalata), Fire-resistant composites based on acrylic-functionalized lignin and polyester resin obtained from waste poly(ethylene terephthalate)",
pages = "37-32",
number = "2",
volume = "72",
doi = "10.5937/str2202032K",
url = "conv_736"
}
Knežević, N., Jovanović, A., Bošnjaković, J., Milošević, M., Rančić, M., Marinković, A., Gržetić, J.,& Gamoudi, H.. (2022). Vatrootporni kompoziti na bazi akril-funkcionalizovanog lignina i poliesterske smole dobijene od otpadnog poli(etilen tereftalata). in Scientific Technical Review
Vojnotehnički institut, Beograd., 72(2), 32-37.
https://doi.org/10.5937/str2202032K
conv_736
Knežević N, Jovanović A, Bošnjaković J, Milošević M, Rančić M, Marinković A, Gržetić J, Gamoudi H. Vatrootporni kompoziti na bazi akril-funkcionalizovanog lignina i poliesterske smole dobijene od otpadnog poli(etilen tereftalata). in Scientific Technical Review. 2022;72(2):32-37.
doi:10.5937/str2202032K
conv_736 .
Knežević, Nataša, Jovanović, Aleksandar, Bošnjaković, Jovan, Milošević, Milena, Rančić, Milica, Marinković, Aleksandar, Gržetić, Jelena, Gamoudi, Houda, "Vatrootporni kompoziti na bazi akril-funkcionalizovanog lignina i poliesterske smole dobijene od otpadnog poli(etilen tereftalata)" in Scientific Technical Review, 72, no. 2 (2022):32-37,
https://doi.org/10.5937/str2202032K .,
conv_736 .
2

New Facile One-Pot Synthesis of Isobutyl Thiocarbamate in Recycling Solvent Mixture

Milentijević, Goran; Marinković, Aleksandar D.; Rančić, Milica; Bogdanović, Aleksandra; Prlainović, Nevena; Marković, Smiljana; Milosavljević, Milutin

(2021)

TY  - JOUR
AU  - Milentijević, Goran
AU  - Marinković, Aleksandar D.
AU  - Rančić, Milica
AU  - Bogdanović, Aleksandra
AU  - Prlainović, Nevena
AU  - Marković, Smiljana
AU  - Milosavljević, Milutin
PY  - 2021
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1193
AB  - The specific objectives of the presented study were related to the optimization of the production process of N-alkyl-, N,N-dialkyl-, and N-cycloalkyl-O-isobutyl thiocarbamate; trial industrial production of N-ethyl-O-isobutyl thiocarbamate; and the evaluation of flotation efficiency of N-ethyl-O-isobutyl thiocarbamate using a real ore sample. The optimization of thiocarbamate syntheses were performed by varying the molar ratio of isobutyl alcohol, carbon disulfide, potassium hydroxide, reaction time, and reaction temperature. In the first step, one-pot reaction took place to produce alkyl xanthate and was followed with chlorination to give alkyl chloroformate (O-alkyl carbonochloridothioate); finally, thiocarbamates were obtained by the reaction with corresponding amines. N-alkyl-O-ethyl thiocarbamate was synthesized as a comparative flotation agent. The structure of the synthesized compounds was confirmed by IR, H-1 and C-13 NMR, and MS instrumental methods, and the purity was determined by gas chromatographic method and elemental analysis. The optimized methods gave high-purity products in a significant yield that was also confirmed by semi-industrial production of N-ethyl-O-isobutyl thiocarbamate. The optimized thiocarbamate synthesis, without isolation of intermediates, is of great importance from the aspect of green technologies. Flotation efficiency test results, using real copper and zinc ores, showed the highest activity of N-ethyl-O-isobutyl thiocarbamate. The optimal one-pot thiocarbamate synthesis provides a simple procedure with a high conversion degree, and, thus, offers valuable technology applicable at the industrial scale.
T2  - Minerals
T1  - New Facile One-Pot Synthesis of Isobutyl Thiocarbamate in Recycling Solvent Mixture
IS  - 12
VL  - 11
DO  - 10.3390/min11121346
UR  - conv_1605
ER  - 
@article{
author = "Milentijević, Goran and Marinković, Aleksandar D. and Rančić, Milica and Bogdanović, Aleksandra and Prlainović, Nevena and Marković, Smiljana and Milosavljević, Milutin",
year = "2021",
abstract = "The specific objectives of the presented study were related to the optimization of the production process of N-alkyl-, N,N-dialkyl-, and N-cycloalkyl-O-isobutyl thiocarbamate; trial industrial production of N-ethyl-O-isobutyl thiocarbamate; and the evaluation of flotation efficiency of N-ethyl-O-isobutyl thiocarbamate using a real ore sample. The optimization of thiocarbamate syntheses were performed by varying the molar ratio of isobutyl alcohol, carbon disulfide, potassium hydroxide, reaction time, and reaction temperature. In the first step, one-pot reaction took place to produce alkyl xanthate and was followed with chlorination to give alkyl chloroformate (O-alkyl carbonochloridothioate); finally, thiocarbamates were obtained by the reaction with corresponding amines. N-alkyl-O-ethyl thiocarbamate was synthesized as a comparative flotation agent. The structure of the synthesized compounds was confirmed by IR, H-1 and C-13 NMR, and MS instrumental methods, and the purity was determined by gas chromatographic method and elemental analysis. The optimized methods gave high-purity products in a significant yield that was also confirmed by semi-industrial production of N-ethyl-O-isobutyl thiocarbamate. The optimized thiocarbamate synthesis, without isolation of intermediates, is of great importance from the aspect of green technologies. Flotation efficiency test results, using real copper and zinc ores, showed the highest activity of N-ethyl-O-isobutyl thiocarbamate. The optimal one-pot thiocarbamate synthesis provides a simple procedure with a high conversion degree, and, thus, offers valuable technology applicable at the industrial scale.",
journal = "Minerals",
title = "New Facile One-Pot Synthesis of Isobutyl Thiocarbamate in Recycling Solvent Mixture",
number = "12",
volume = "11",
doi = "10.3390/min11121346",
url = "conv_1605"
}
Milentijević, G., Marinković, A. D., Rančić, M., Bogdanović, A., Prlainović, N., Marković, S.,& Milosavljević, M.. (2021). New Facile One-Pot Synthesis of Isobutyl Thiocarbamate in Recycling Solvent Mixture. in Minerals, 11(12).
https://doi.org/10.3390/min11121346
conv_1605
Milentijević G, Marinković AD, Rančić M, Bogdanović A, Prlainović N, Marković S, Milosavljević M. New Facile One-Pot Synthesis of Isobutyl Thiocarbamate in Recycling Solvent Mixture. in Minerals. 2021;11(12).
doi:10.3390/min11121346
conv_1605 .
Milentijević, Goran, Marinković, Aleksandar D., Rančić, Milica, Bogdanović, Aleksandra, Prlainović, Nevena, Marković, Smiljana, Milosavljević, Milutin, "New Facile One-Pot Synthesis of Isobutyl Thiocarbamate in Recycling Solvent Mixture" in Minerals, 11, no. 12 (2021),
https://doi.org/10.3390/min11121346 .,
conv_1605 .
1
1
1

New Eco-Friendly Xanthate-Based Flotation Agents

Milosavljević, Milutin M.; Marinković, Aleksandar D.; Rančić, Milica; Milentijević, Goran; Bogdanović, Aleksandra; Cvijetić, Ilija N.; Guresić, Dejan

(2020)

TY  - JOUR
AU  - Milosavljević, Milutin M.
AU  - Marinković, Aleksandar D.
AU  - Rančić, Milica
AU  - Milentijević, Goran
AU  - Bogdanović, Aleksandra
AU  - Cvijetić, Ilija N.
AU  - Guresić, Dejan
PY  - 2020
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1151
AB  - An optimal laboratory two-step procedure was developed for sodium/potassium O-alkyl carbonodithioate (sodium/potassium alkyl xanthates) production in the form of aqueous solutions. Sodium isopropyl xanthate (Na-iPrX), as the most effective salt in a real ore flotation process, was also produced at an industrial level and introduced as a collector for copper ores. In order to reduce toxicity of the flotation process and improve sustainability by minimising environmental impacts, collector efficiency and selectivity in the flotation process were studied in relation to possible synergism of xanthates combined with the derived biomass and biodegradable green reagents levulinic acid, 5-hydroxymethyl-2-furanacrylic acid (HMFA), and condensation product of hydroxymethylfurfural and levulinic acid. Optimal content of 30% of HMFA in the collector pointed to the possibility of substitution of commercial xanthate collector without significantly affecting its efficiency/selectivity. The density functional theory (DFT) calculations provided insights into the interaction mechanism of Na-iPrX and HMFA with cooper. The benefits of the presented method highlight production simplicity, mild reaction conditions, high purity and yield of products, no by-products, and technological applicability on an industrial scale.
T2  - Minerals
T1  - New Eco-Friendly Xanthate-Based Flotation Agents
IS  - 4
VL  - 10
DO  - 10.3390/min10040350
UR  - conv_1491
ER  - 
@article{
author = "Milosavljević, Milutin M. and Marinković, Aleksandar D. and Rančić, Milica and Milentijević, Goran and Bogdanović, Aleksandra and Cvijetić, Ilija N. and Guresić, Dejan",
year = "2020",
abstract = "An optimal laboratory two-step procedure was developed for sodium/potassium O-alkyl carbonodithioate (sodium/potassium alkyl xanthates) production in the form of aqueous solutions. Sodium isopropyl xanthate (Na-iPrX), as the most effective salt in a real ore flotation process, was also produced at an industrial level and introduced as a collector for copper ores. In order to reduce toxicity of the flotation process and improve sustainability by minimising environmental impacts, collector efficiency and selectivity in the flotation process were studied in relation to possible synergism of xanthates combined with the derived biomass and biodegradable green reagents levulinic acid, 5-hydroxymethyl-2-furanacrylic acid (HMFA), and condensation product of hydroxymethylfurfural and levulinic acid. Optimal content of 30% of HMFA in the collector pointed to the possibility of substitution of commercial xanthate collector without significantly affecting its efficiency/selectivity. The density functional theory (DFT) calculations provided insights into the interaction mechanism of Na-iPrX and HMFA with cooper. The benefits of the presented method highlight production simplicity, mild reaction conditions, high purity and yield of products, no by-products, and technological applicability on an industrial scale.",
journal = "Minerals",
title = "New Eco-Friendly Xanthate-Based Flotation Agents",
number = "4",
volume = "10",
doi = "10.3390/min10040350",
url = "conv_1491"
}
Milosavljević, M. M., Marinković, A. D., Rančić, M., Milentijević, G., Bogdanović, A., Cvijetić, I. N.,& Guresić, D.. (2020). New Eco-Friendly Xanthate-Based Flotation Agents. in Minerals, 10(4).
https://doi.org/10.3390/min10040350
conv_1491
Milosavljević MM, Marinković AD, Rančić M, Milentijević G, Bogdanović A, Cvijetić IN, Guresić D. New Eco-Friendly Xanthate-Based Flotation Agents. in Minerals. 2020;10(4).
doi:10.3390/min10040350
conv_1491 .
Milosavljević, Milutin M., Marinković, Aleksandar D., Rančić, Milica, Milentijević, Goran, Bogdanović, Aleksandra, Cvijetić, Ilija N., Guresić, Dejan, "New Eco-Friendly Xanthate-Based Flotation Agents" in Minerals, 10, no. 4 (2020),
https://doi.org/10.3390/min10040350 .,
conv_1491 .
9
10
11