Bajat, Branislav

Link to this page

Authority KeyName Variants
orcid::0000-0002-4274-2534
  • Bajat, Branislav (2)
Projects

Author's Bibliography

Agricultural Land Use Changes as a Driving Force of Soil Erosion in the Velika Morava River Basin, Serbia

Srejić, Tanja; Manojlović, Sanja; Sibinović, Mikica; Bajat, Branislav; Novković, Ivan; Milošević, Marko V.; Carević, Ivana; Todosijević, Mirjana; Sedlak, Marko G.

(2023)

TY  - JOUR
AU  - Srejić, Tanja
AU  - Manojlović, Sanja
AU  - Sibinović, Mikica
AU  - Bajat, Branislav
AU  - Novković, Ivan
AU  - Milošević, Marko V.
AU  - Carević, Ivana
AU  - Todosijević, Mirjana
AU  - Sedlak, Marko G.
PY  - 2023
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1426
AB  - The erosion potential model was applied to estimate the soil erosion status of rural settlements during the years 1971 and 2011. We used univariate and bivariate local Moran's I indices to detect and visualize the spatial clustering of settlements with respect to changes in erosion intensity and agricultural land use, as well as their mutual spatial correlation. The study area was differentiated into four statistically significant clusters using the calculated bivariate local Moran's I indices. The statistical analysis examined the two largest clusters, i.e., the high-high and low-low clusters, and the results of the research indicate that the first four principal components explained 70.50% and 73.47% of the total variance, respectively. In the high-high cluster, the low rates of erosion reduction (average Index Z = 98) in the most significant types of rural settlements were determined according to demographic indicators (i.e., the higher population vitality and population density, the smaller share of the old population and the lower average age of the population) and the large proportion of arable land and Neogene sediments. In the low-low cluster, high erosion reduction rates were detected (average index Z = 64). In this cluster, the more statistically significant influence of natural conditions in combination with demographic-agrarian processes (i.e., the larger share of the old population, the higher average age of the population, the lower vitality index and deagrarization) were decisive factors in changing erosion intensity.
T2  - Agriculture-Basel
T1  - Agricultural Land Use Changes as a Driving Force of Soil Erosion in the Velika Morava River Basin, Serbia
IS  - 4
VL  - 13
DO  - 10.3390/agriculture13040778
UR  - conv_1700
ER  - 
@article{
author = "Srejić, Tanja and Manojlović, Sanja and Sibinović, Mikica and Bajat, Branislav and Novković, Ivan and Milošević, Marko V. and Carević, Ivana and Todosijević, Mirjana and Sedlak, Marko G.",
year = "2023",
abstract = "The erosion potential model was applied to estimate the soil erosion status of rural settlements during the years 1971 and 2011. We used univariate and bivariate local Moran's I indices to detect and visualize the spatial clustering of settlements with respect to changes in erosion intensity and agricultural land use, as well as their mutual spatial correlation. The study area was differentiated into four statistically significant clusters using the calculated bivariate local Moran's I indices. The statistical analysis examined the two largest clusters, i.e., the high-high and low-low clusters, and the results of the research indicate that the first four principal components explained 70.50% and 73.47% of the total variance, respectively. In the high-high cluster, the low rates of erosion reduction (average Index Z = 98) in the most significant types of rural settlements were determined according to demographic indicators (i.e., the higher population vitality and population density, the smaller share of the old population and the lower average age of the population) and the large proportion of arable land and Neogene sediments. In the low-low cluster, high erosion reduction rates were detected (average index Z = 64). In this cluster, the more statistically significant influence of natural conditions in combination with demographic-agrarian processes (i.e., the larger share of the old population, the higher average age of the population, the lower vitality index and deagrarization) were decisive factors in changing erosion intensity.",
journal = "Agriculture-Basel",
title = "Agricultural Land Use Changes as a Driving Force of Soil Erosion in the Velika Morava River Basin, Serbia",
number = "4",
volume = "13",
doi = "10.3390/agriculture13040778",
url = "conv_1700"
}
Srejić, T., Manojlović, S., Sibinović, M., Bajat, B., Novković, I., Milošević, M. V., Carević, I., Todosijević, M.,& Sedlak, M. G.. (2023). Agricultural Land Use Changes as a Driving Force of Soil Erosion in the Velika Morava River Basin, Serbia. in Agriculture-Basel, 13(4).
https://doi.org/10.3390/agriculture13040778
conv_1700
Srejić T, Manojlović S, Sibinović M, Bajat B, Novković I, Milošević MV, Carević I, Todosijević M, Sedlak MG. Agricultural Land Use Changes as a Driving Force of Soil Erosion in the Velika Morava River Basin, Serbia. in Agriculture-Basel. 2023;13(4).
doi:10.3390/agriculture13040778
conv_1700 .
Srejić, Tanja, Manojlović, Sanja, Sibinović, Mikica, Bajat, Branislav, Novković, Ivan, Milošević, Marko V., Carević, Ivana, Todosijević, Mirjana, Sedlak, Marko G., "Agricultural Land Use Changes as a Driving Force of Soil Erosion in the Velika Morava River Basin, Serbia" in Agriculture-Basel, 13, no. 4 (2023),
https://doi.org/10.3390/agriculture13040778 .,
conv_1700 .
17
12
15

Ocena nesigurnosti prostorne koncentracije oticaja primenom Monte Karlo stohastičkih simulacija

Višnjevac, Nenad; Cvijetinović, Željko; Bajat, Branislav; Radić, Boris; Ristić, Ratko; Milčanović, Vukašin

(Univerzitet u Beogradu - Šumarski fakultet, Beograd, 2013)

TY  - JOUR
AU  - Višnjevac, Nenad
AU  - Cvijetinović, Željko
AU  - Bajat, Branislav
AU  - Radić, Boris
AU  - Ristić, Ratko
AU  - Milčanović, Vukašin
PY  - 2013
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/556
AB  - Izlazni rezultati dobijeni primenom GIS funkcija i alatki za analizu, obično se podrazumevaju kao tačni, međutim i oni su podložni nesigurnostima koje mogu uticati na odluke bazirane na tim istim rezultatima. Ocena uticaja nesigurnosti rezultata je veoma kompleksna i često nemoguća primenom standardnih matematičkih metoda s obzirom na veoma kompleksne algoritme koji se koriste u GIS analizama. U ovom radu razmatrano je alternativno rešenje kod ocene nesigurnosti prostorne koncentracije oticaja, primenom Monte Karlo stohastičkih simulacija. Za područje šireg obuhvata opštine Čačak generisano je sto mogućih izlaznih verzija rezultata prostorne koncentracije oticaja primenom Monte Karlo stohastičkih simulacija. Na osnovu njih, uz odgovarajuće statističke analize dobijena je 'najverovatnija' verzija prostorne koncentracije oticaja uz pripadajući interval poverenja odnosno standardne devijacije dobijenih rešenja. U radu su opisane najznačajnije faze u procesu ocene nesigurnosti, poput modeliranja variograma i odabira broja simulacija. Takođe je data i preporuka kako najefikasnije primeniti i diskutovati dobijene rezultate i njihovu značajnost.
AB  - Very often, outputs provided by GIS functions and analysis are assumed as exact results. However, they are influenced by certain uncertainty which may affect the decisions based on those results. It is very complex and almost impossible to calculate that uncertainty using classical mathematical models because of very complex algorithms that are used in GIS analyses. In this paper we discuss an alternative method, i.e. the use of stochastic Monte Carlo simulations to estimate the uncertainty of flow accumulation. The case study area included the broader area of the Municipality of Čačak, where Monte Carlo stochastic simulations were applied in order to create one hundred possible outputs of flow accumulation. A statistical analysis was performed on the basis of these versions, and the 'most likely' version of flow accumulation in association with its confidence bounds (standard deviation) was created. Further, this paper describes the most important phases in the process of estimating uncertainty, such as variogram modelling and chooses the right number of simulations. Finally, it makes suggestions on how to effectively use and discuss the results and their practical significance.
PB  - Univerzitet u Beogradu - Šumarski fakultet, Beograd
T2  - Glasnik Šumarskog fakulteta
T1  - Ocena nesigurnosti prostorne koncentracije oticaja primenom Monte Karlo stohastičkih simulacija
T1  - Estimation of flow accumulation uncertainty by Monte Carlo stochastic simulations
EP  - 24
IS  - 108
SP  - 7
DO  - 10.2298/GSF1308007V
UR  - conv_392
ER  - 
@article{
author = "Višnjevac, Nenad and Cvijetinović, Željko and Bajat, Branislav and Radić, Boris and Ristić, Ratko and Milčanović, Vukašin",
year = "2013",
abstract = "Izlazni rezultati dobijeni primenom GIS funkcija i alatki za analizu, obično se podrazumevaju kao tačni, međutim i oni su podložni nesigurnostima koje mogu uticati na odluke bazirane na tim istim rezultatima. Ocena uticaja nesigurnosti rezultata je veoma kompleksna i često nemoguća primenom standardnih matematičkih metoda s obzirom na veoma kompleksne algoritme koji se koriste u GIS analizama. U ovom radu razmatrano je alternativno rešenje kod ocene nesigurnosti prostorne koncentracije oticaja, primenom Monte Karlo stohastičkih simulacija. Za područje šireg obuhvata opštine Čačak generisano je sto mogućih izlaznih verzija rezultata prostorne koncentracije oticaja primenom Monte Karlo stohastičkih simulacija. Na osnovu njih, uz odgovarajuće statističke analize dobijena je 'najverovatnija' verzija prostorne koncentracije oticaja uz pripadajući interval poverenja odnosno standardne devijacije dobijenih rešenja. U radu su opisane najznačajnije faze u procesu ocene nesigurnosti, poput modeliranja variograma i odabira broja simulacija. Takođe je data i preporuka kako najefikasnije primeniti i diskutovati dobijene rezultate i njihovu značajnost., Very often, outputs provided by GIS functions and analysis are assumed as exact results. However, they are influenced by certain uncertainty which may affect the decisions based on those results. It is very complex and almost impossible to calculate that uncertainty using classical mathematical models because of very complex algorithms that are used in GIS analyses. In this paper we discuss an alternative method, i.e. the use of stochastic Monte Carlo simulations to estimate the uncertainty of flow accumulation. The case study area included the broader area of the Municipality of Čačak, where Monte Carlo stochastic simulations were applied in order to create one hundred possible outputs of flow accumulation. A statistical analysis was performed on the basis of these versions, and the 'most likely' version of flow accumulation in association with its confidence bounds (standard deviation) was created. Further, this paper describes the most important phases in the process of estimating uncertainty, such as variogram modelling and chooses the right number of simulations. Finally, it makes suggestions on how to effectively use and discuss the results and their practical significance.",
publisher = "Univerzitet u Beogradu - Šumarski fakultet, Beograd",
journal = "Glasnik Šumarskog fakulteta",
title = "Ocena nesigurnosti prostorne koncentracije oticaja primenom Monte Karlo stohastičkih simulacija, Estimation of flow accumulation uncertainty by Monte Carlo stochastic simulations",
pages = "24-7",
number = "108",
doi = "10.2298/GSF1308007V",
url = "conv_392"
}
Višnjevac, N., Cvijetinović, Ž., Bajat, B., Radić, B., Ristić, R.,& Milčanović, V.. (2013). Ocena nesigurnosti prostorne koncentracije oticaja primenom Monte Karlo stohastičkih simulacija. in Glasnik Šumarskog fakulteta
Univerzitet u Beogradu - Šumarski fakultet, Beograd.(108), 7-24.
https://doi.org/10.2298/GSF1308007V
conv_392
Višnjevac N, Cvijetinović Ž, Bajat B, Radić B, Ristić R, Milčanović V. Ocena nesigurnosti prostorne koncentracije oticaja primenom Monte Karlo stohastičkih simulacija. in Glasnik Šumarskog fakulteta. 2013;(108):7-24.
doi:10.2298/GSF1308007V
conv_392 .
Višnjevac, Nenad, Cvijetinović, Željko, Bajat, Branislav, Radić, Boris, Ristić, Ratko, Milčanović, Vukašin, "Ocena nesigurnosti prostorne koncentracije oticaja primenom Monte Karlo stohastičkih simulacija" in Glasnik Šumarskog fakulteta, no. 108 (2013):7-24,
https://doi.org/10.2298/GSF1308007V .,
conv_392 .