Pavlović, Vladimir

Link to this page

Authority KeyName Variants
86f67cd3-93e2-45a3-90e7-554311ea8145
  • Pavlović, Vladimir (2)
Projects

Author's Bibliography

Evaluation of Adsorption Performance and Quantum Chemical Modeling of Pesticides Removal using Cell-MG Hybrid Adsorbent

Perendija, Jovana; Velicković, Zlate; Drazević, Ljubinka; Stojiljković, Ivana; Milcić, Miloš; Milosavljević, Milutin M.; Marinković, Aleksandar D.; Pavlović, Vladimir

(Međunarodni Institut za nauku o sinterovanju, Beograd, 2021)

TY  - JOUR
AU  - Perendija, Jovana
AU  - Velicković, Zlate
AU  - Drazević, Ljubinka
AU  - Stojiljković, Ivana
AU  - Milcić, Miloš
AU  - Milosavljević, Milutin M.
AU  - Marinković, Aleksandar D.
AU  - Pavlović, Vladimir
PY  - 2021
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1198
AB  - Magnetite (MG) modified cellulose membrane (Cell-MG), obtained by reaction of 3-aminosilane and subsequently with diethylenetriaminepentaacetic acid dianhydride functionalized waste Cell fibers (Cell-NH2 and Cell-DTPA, respectively), and amino-modified diatomite was used for Azoxystrobin and Iprodione removal from water. Cell-MG membrane was structurally and morphologically characterized using FT-IR and FE-SEM techniques. The influences of operational parameters, i.e. pH, contact time, temperature, and the mass of adsorbent on adsorption and kinetics were studied in a batch system. The calculated capacities of 35.32 and 30.16 mg g(-1) for Azoxystrobin and Iprodione, respectively, were obtained from non-linear Langmuir model fitting. Weber-Morris model fitting indicates the main contribution of intra-particle diffusion to overall mass transport resistance. Thermodynamic data indicate spontaneous and endothermic adsorption. The reusability of adsorbent and results from wastewater purification showed that Cell-MG could be used as general-purpose adsorbent. The adsorbent/adsorbate surface interaction was considered from the results obtained using density functional theory (DFT) and calculation of molecular electrostatic potential (MEP). Thus, a better understanding of the relation between the adsorption performances and contribution of non-specific and specific interactions to adsorption performances and design of novel adsorbent with improved properties was deduced.
PB  - Međunarodni Institut za nauku o sinterovanju, Beograd
T2  - Science of Sintering
T1  - Evaluation of Adsorption Performance and Quantum Chemical Modeling of Pesticides Removal using Cell-MG Hybrid Adsorbent
EP  - 378
IS  - 3
SP  - 355
VL  - 53
DO  - 10.2298/SOS2103355P
UR  - conv_1598
ER  - 
@article{
author = "Perendija, Jovana and Velicković, Zlate and Drazević, Ljubinka and Stojiljković, Ivana and Milcić, Miloš and Milosavljević, Milutin M. and Marinković, Aleksandar D. and Pavlović, Vladimir",
year = "2021",
abstract = "Magnetite (MG) modified cellulose membrane (Cell-MG), obtained by reaction of 3-aminosilane and subsequently with diethylenetriaminepentaacetic acid dianhydride functionalized waste Cell fibers (Cell-NH2 and Cell-DTPA, respectively), and amino-modified diatomite was used for Azoxystrobin and Iprodione removal from water. Cell-MG membrane was structurally and morphologically characterized using FT-IR and FE-SEM techniques. The influences of operational parameters, i.e. pH, contact time, temperature, and the mass of adsorbent on adsorption and kinetics were studied in a batch system. The calculated capacities of 35.32 and 30.16 mg g(-1) for Azoxystrobin and Iprodione, respectively, were obtained from non-linear Langmuir model fitting. Weber-Morris model fitting indicates the main contribution of intra-particle diffusion to overall mass transport resistance. Thermodynamic data indicate spontaneous and endothermic adsorption. The reusability of adsorbent and results from wastewater purification showed that Cell-MG could be used as general-purpose adsorbent. The adsorbent/adsorbate surface interaction was considered from the results obtained using density functional theory (DFT) and calculation of molecular electrostatic potential (MEP). Thus, a better understanding of the relation between the adsorption performances and contribution of non-specific and specific interactions to adsorption performances and design of novel adsorbent with improved properties was deduced.",
publisher = "Međunarodni Institut za nauku o sinterovanju, Beograd",
journal = "Science of Sintering",
title = "Evaluation of Adsorption Performance and Quantum Chemical Modeling of Pesticides Removal using Cell-MG Hybrid Adsorbent",
pages = "378-355",
number = "3",
volume = "53",
doi = "10.2298/SOS2103355P",
url = "conv_1598"
}
Perendija, J., Velicković, Z., Drazević, L., Stojiljković, I., Milcić, M., Milosavljević, M. M., Marinković, A. D.,& Pavlović, V.. (2021). Evaluation of Adsorption Performance and Quantum Chemical Modeling of Pesticides Removal using Cell-MG Hybrid Adsorbent. in Science of Sintering
Međunarodni Institut za nauku o sinterovanju, Beograd., 53(3), 355-378.
https://doi.org/10.2298/SOS2103355P
conv_1598
Perendija J, Velicković Z, Drazević L, Stojiljković I, Milcić M, Milosavljević MM, Marinković AD, Pavlović V. Evaluation of Adsorption Performance and Quantum Chemical Modeling of Pesticides Removal using Cell-MG Hybrid Adsorbent. in Science of Sintering. 2021;53(3):355-378.
doi:10.2298/SOS2103355P
conv_1598 .
Perendija, Jovana, Velicković, Zlate, Drazević, Ljubinka, Stojiljković, Ivana, Milcić, Miloš, Milosavljević, Milutin M., Marinković, Aleksandar D., Pavlović, Vladimir, "Evaluation of Adsorption Performance and Quantum Chemical Modeling of Pesticides Removal using Cell-MG Hybrid Adsorbent" in Science of Sintering, 53, no. 3 (2021):355-378,
https://doi.org/10.2298/SOS2103355P .,
conv_1598 .
5
3
4

Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size

Taleb, Khaled; Markovski, Jasmina; Velicković, Zlate; Rusmirović, Jelena D.; Rančić, Milica; Pavlović, Vladimir; Marinković, Aleksandar

(Elsevier, 2019)

TY  - JOUR
AU  - Taleb, Khaled
AU  - Markovski, Jasmina
AU  - Velicković, Zlate
AU  - Rusmirović, Jelena D.
AU  - Rančić, Milica
AU  - Pavlović, Vladimir
AU  - Marinković, Aleksandar
PY  - 2019
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1078
AB  - Comparative adsorption study related to benefits of parent media size, i.e. microfibrillated cellulose (MC) versus nanocellulose (NC) support, for the preparation of magnetite (MG) based high performance adsorbent for arsenic removal was conducted. Precipitation of MG on amino terminal branched organic structure, L, either linked by maleic acid residue on NC surface (NC-MA/L) or linked by oxalyl bridge on MC surface (MC-O/L) produced NC-MA/L-MG and MC-O/L-MG adsorbents, respectively. Precipitation of nanosized MG on amino functionalized NC-MA/L and MC-O/L, performed according to optimized procedure, contributed to improved textural properties and adsorptive/kinetic performances of novel adsorbents. Adsorption capacity of arsenate, As(V), was in favor of NC-MA/L-MG (85.3 versus 18.5 mg g(-1)) while MC-O/L-MG exhibited faster kinetics (0.541 versus 0.189 g mg(-1) min(-1)). Lower capacity of arsenite, As(III), removal, 68.3 mg g(-1) for NC-MA/L-MG and 17.8 mg g(-1) for MC-O/L-MG, were obtained. Calculated activation energies, 13.28 and 10.87 kJ mol(-1) for NC-MA/L-MG and MC-O/L-MG with respect to As(V), respectively, suggest, in accordance with results of Weber-Morris fitting, that internal mass transfer controls adsorption process. Model free adsorption kinetics confirmed beneficial uses of MC-O/L-MG due to low activation energy dependence on the extent of adsorption.
PB  - Elsevier
T2  - Arabian Journal of Chemistry
T1  - Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size
EP  - 4693
IS  - 8
SP  - 4675
VL  - 12
UR  - conv_2395
ER  - 
@article{
author = "Taleb, Khaled and Markovski, Jasmina and Velicković, Zlate and Rusmirović, Jelena D. and Rančić, Milica and Pavlović, Vladimir and Marinković, Aleksandar",
year = "2019",
abstract = "Comparative adsorption study related to benefits of parent media size, i.e. microfibrillated cellulose (MC) versus nanocellulose (NC) support, for the preparation of magnetite (MG) based high performance adsorbent for arsenic removal was conducted. Precipitation of MG on amino terminal branched organic structure, L, either linked by maleic acid residue on NC surface (NC-MA/L) or linked by oxalyl bridge on MC surface (MC-O/L) produced NC-MA/L-MG and MC-O/L-MG adsorbents, respectively. Precipitation of nanosized MG on amino functionalized NC-MA/L and MC-O/L, performed according to optimized procedure, contributed to improved textural properties and adsorptive/kinetic performances of novel adsorbents. Adsorption capacity of arsenate, As(V), was in favor of NC-MA/L-MG (85.3 versus 18.5 mg g(-1)) while MC-O/L-MG exhibited faster kinetics (0.541 versus 0.189 g mg(-1) min(-1)). Lower capacity of arsenite, As(III), removal, 68.3 mg g(-1) for NC-MA/L-MG and 17.8 mg g(-1) for MC-O/L-MG, were obtained. Calculated activation energies, 13.28 and 10.87 kJ mol(-1) for NC-MA/L-MG and MC-O/L-MG with respect to As(V), respectively, suggest, in accordance with results of Weber-Morris fitting, that internal mass transfer controls adsorption process. Model free adsorption kinetics confirmed beneficial uses of MC-O/L-MG due to low activation energy dependence on the extent of adsorption.",
publisher = "Elsevier",
journal = "Arabian Journal of Chemistry",
title = "Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size",
pages = "4693-4675",
number = "8",
volume = "12",
url = "conv_2395"
}
Taleb, K., Markovski, J., Velicković, Z., Rusmirović, J. D., Rančić, M., Pavlović, V.,& Marinković, A.. (2019). Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size. in Arabian Journal of Chemistry
Elsevier., 12(8), 4675-4693.
conv_2395
Taleb K, Markovski J, Velicković Z, Rusmirović JD, Rančić M, Pavlović V, Marinković A. Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size. in Arabian Journal of Chemistry. 2019;12(8):4675-4693.
conv_2395 .
Taleb, Khaled, Markovski, Jasmina, Velicković, Zlate, Rusmirović, Jelena D., Rančić, Milica, Pavlović, Vladimir, Marinković, Aleksandar, "Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size" in Arabian Journal of Chemistry, 12, no. 8 (2019):4675-4693,
conv_2395 .
65
79