Zlatanov, Tzvetan

Link to this page

Authority KeyName Variants
orcid::0000-0003-4205-3429
  • Zlatanov, Tzvetan (11)
Projects
Bavarian State Ministry of Food, Agriculture, and Forestry [7831-26625-2017] European Union [2816ERA02S]
Fundacio La Caixa through the Junior Leader Program [LCF/BQ/LR18/11640004] Ministry of Science, Technological Development and Innovation of the Republic of Serbia, institutional funding - 200169 (University of Belgrade, Faculty of Forestry)
Ministry of Science and Higher Education of the Republic of Poland Slovenian Research Agency [J4-1765]
[32271973] Agnese N. Haury Visiting Scholar & Trainee Fellowship (Laboratory of Tree-Ring Research, University of Arizona)
Alexander von Humboldt Foundation ARIS-Slovenian Research and Innovation Agency [P4-0015]
Bavarian Ministry of Science and Arts from the Bavarian Climate Research Network (BayKliF) Bavarian Ministry of Science and the Arts
Bavarian Ministry of Science and the Arts in the context of the Bavarian Climate Research Network (BayKliF) Bavarian State Ministry of Food, Agriculture, and Forestry [#7831-26625-2017]
Bulgarian National Science Fund (BNSF) Bulgarian National Science Fund (BNSF) [DCOST 01/3/19.10.2018]
Bulgarian National Service Fund (BNSF) [DCOST 01/3/19.10.2018] Castilla and Leon regional government (Spain) excellence projects
Castilla and Leon regional govern-ment (Spain) excellence projects [CLU-2019-01, CL-EI-2021-05, VA183P20] CNCS-UEFISCDI [PN-III-P4-PCE-2021-1002]
COST Action COST Action CLIMO (ClimateSmart Forestry in Mountain Regions) - EU Framework Programme for Research and Innovation HORIZON 2020 [CA15226]
COST (European Cooperation in Science and Technology) Action CLIMO (ClimateSmart Forestry in Mountain Regions) [CA15226] Czech Science
[DCOST 01/3/19.10.2018] DendrOlavide II [IE19_074 UPO]
DFG GRK 2010 Response [DO1-163/28.07.2022]
[DO1-405/18.12.2020] ERC [AdG 882727, CZ.02.1.01/0.0/0.0/16_019/0000797]

Author's Bibliography

Identifying drivers of non-stationary climate-growth relationships of European beech

Leifsson, Christopher; Buras, Allan; Klesse, Stefan; Baittinger, Claudia; Bat-Enerel, Banzragch; Battipaglia, Giovanna; Biondi, Franco; Stajić, Branko; Budeanu, Marius; Cada, Vojtech; Cavin, Liam; Claessens, Hugues; Cufar, Katarina; de Luis, Martin; Dorado-Linan, Isabel; Dulamsuren, Choimaa; Garamszegi, Balazs; Grabner, Michael; Hacket-Pain, Andrew; Hansen, Jon Kehlet; Hartl, Claudia; Huang, Weiwei; Janda, Pavel; Jump, Alistair S.; Kazimirović, Marko; Knutzen, Florian; Kreyling, Juergen; Land, Alexander; Latte, Nicolas; Lebourgeois, Francois; Leuschner, Christoph; Longares, Luis A.; Castillo, Edurne Martinez del; Menzel, Annette; Motta, Renzo; Muffler-Weigel, Lena; Nola, Paola; Panayotov, Momchil; Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel; Roibu, Catalin-Constantin; Rubio-Cuadrado, Alvaro; Rydval, Miloš; Scharnweber, Tobias; Camarero, J. Julio; Svoboda, Miroslav; Toromani, Elvin; Trotsiuk, Volodymyr; Maaten-Theunissen, Marieke van der; Maaten, Ernst van der; Weigel, Robert; Wilmking, Martin; Zlatanov, Tzvetan; Rammig, Anja; Zang, Christian

(2024)

TY  - JOUR
AU  - Leifsson, Christopher
AU  - Buras, Allan
AU  - Klesse, Stefan
AU  - Baittinger, Claudia
AU  - Bat-Enerel, Banzragch
AU  - Battipaglia, Giovanna
AU  - Biondi, Franco
AU  - Stajić, Branko
AU  - Budeanu, Marius
AU  - Cada, Vojtech
AU  - Cavin, Liam
AU  - Claessens, Hugues
AU  - Cufar, Katarina
AU  - de Luis, Martin
AU  - Dorado-Linan, Isabel
AU  - Dulamsuren, Choimaa
AU  - Garamszegi, Balazs
AU  - Grabner, Michael
AU  - Hacket-Pain, Andrew
AU  - Hansen, Jon Kehlet
AU  - Hartl, Claudia
AU  - Huang, Weiwei
AU  - Janda, Pavel
AU  - Jump, Alistair S.
AU  - Kazimirović, Marko
AU  - Knutzen, Florian
AU  - Kreyling, Juergen
AU  - Land, Alexander
AU  - Latte, Nicolas
AU  - Lebourgeois, Francois
AU  - Leuschner, Christoph
AU  - Longares, Luis A.
AU  - Castillo, Edurne Martinez del
AU  - Menzel, Annette
AU  - Motta, Renzo
AU  - Muffler-Weigel, Lena
AU  - Nola, Paola
AU  - Panayotov, Momchil
AU  - Petritan, Any Mary
AU  - Petritan, Ion Catalin
AU  - Popa, Ionel
AU  - Roibu, Catalin-Constantin
AU  - Rubio-Cuadrado, Alvaro
AU  - Rydval, Miloš
AU  - Scharnweber, Tobias
AU  - Camarero, J. Julio
AU  - Svoboda, Miroslav
AU  - Toromani, Elvin
AU  - Trotsiuk, Volodymyr
AU  - Maaten-Theunissen, Marieke van der
AU  - Maaten, Ernst van der
AU  - Weigel, Robert
AU  - Wilmking, Martin
AU  - Zlatanov, Tzvetan
AU  - Rammig, Anja
AU  - Zang, Christian
PY  - 2024
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1479
AB  - The future performance of the widely abundant European beech ( Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought -sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross -regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed -canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species ' ecological amplitude. Our results show that drought sensitivity is highly variable and non -stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees ' rank progression within forest communities, as (co -)dominant trees are more sensitive to extra -canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early -warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech 's drought sensitivity, which needs to be taken into consideration when assessing this species ' response to climate change.
T2  - Science of the Total Environment
T1  - Identifying drivers of non-stationary climate-growth relationships of European beech
VL  - 937
DO  - 10.1016/j.scitotenv.2024.173321
UR  - conv_1793
ER  - 
@article{
author = "Leifsson, Christopher and Buras, Allan and Klesse, Stefan and Baittinger, Claudia and Bat-Enerel, Banzragch and Battipaglia, Giovanna and Biondi, Franco and Stajić, Branko and Budeanu, Marius and Cada, Vojtech and Cavin, Liam and Claessens, Hugues and Cufar, Katarina and de Luis, Martin and Dorado-Linan, Isabel and Dulamsuren, Choimaa and Garamszegi, Balazs and Grabner, Michael and Hacket-Pain, Andrew and Hansen, Jon Kehlet and Hartl, Claudia and Huang, Weiwei and Janda, Pavel and Jump, Alistair S. and Kazimirović, Marko and Knutzen, Florian and Kreyling, Juergen and Land, Alexander and Latte, Nicolas and Lebourgeois, Francois and Leuschner, Christoph and Longares, Luis A. and Castillo, Edurne Martinez del and Menzel, Annette and Motta, Renzo and Muffler-Weigel, Lena and Nola, Paola and Panayotov, Momchil and Petritan, Any Mary and Petritan, Ion Catalin and Popa, Ionel and Roibu, Catalin-Constantin and Rubio-Cuadrado, Alvaro and Rydval, Miloš and Scharnweber, Tobias and Camarero, J. Julio and Svoboda, Miroslav and Toromani, Elvin and Trotsiuk, Volodymyr and Maaten-Theunissen, Marieke van der and Maaten, Ernst van der and Weigel, Robert and Wilmking, Martin and Zlatanov, Tzvetan and Rammig, Anja and Zang, Christian",
year = "2024",
abstract = "The future performance of the widely abundant European beech ( Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought -sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross -regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed -canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species ' ecological amplitude. Our results show that drought sensitivity is highly variable and non -stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees ' rank progression within forest communities, as (co -)dominant trees are more sensitive to extra -canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early -warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech 's drought sensitivity, which needs to be taken into consideration when assessing this species ' response to climate change.",
journal = "Science of the Total Environment",
title = "Identifying drivers of non-stationary climate-growth relationships of European beech",
volume = "937",
doi = "10.1016/j.scitotenv.2024.173321",
url = "conv_1793"
}
Leifsson, C., Buras, A., Klesse, S., Baittinger, C., Bat-Enerel, B., Battipaglia, G., Biondi, F., Stajić, B., Budeanu, M., Cada, V., Cavin, L., Claessens, H., Cufar, K., de Luis, M., Dorado-Linan, I., Dulamsuren, C., Garamszegi, B., Grabner, M., Hacket-Pain, A., Hansen, J. K., Hartl, C., Huang, W., Janda, P., Jump, A. S., Kazimirović, M., Knutzen, F., Kreyling, J., Land, A., Latte, N., Lebourgeois, F., Leuschner, C., Longares, L. A., Castillo, E. M. d., Menzel, A., Motta, R., Muffler-Weigel, L., Nola, P., Panayotov, M., Petritan, A. M., Petritan, I. C., Popa, I., Roibu, C., Rubio-Cuadrado, A., Rydval, M., Scharnweber, T., Camarero, J. J., Svoboda, M., Toromani, E., Trotsiuk, V., Maaten-Theunissen, M. v. d., Maaten, E. v. d., Weigel, R., Wilmking, M., Zlatanov, T., Rammig, A.,& Zang, C.. (2024). Identifying drivers of non-stationary climate-growth relationships of European beech. in Science of the Total Environment, 937.
https://doi.org/10.1016/j.scitotenv.2024.173321
conv_1793
Leifsson C, Buras A, Klesse S, Baittinger C, Bat-Enerel B, Battipaglia G, Biondi F, Stajić B, Budeanu M, Cada V, Cavin L, Claessens H, Cufar K, de Luis M, Dorado-Linan I, Dulamsuren C, Garamszegi B, Grabner M, Hacket-Pain A, Hansen JK, Hartl C, Huang W, Janda P, Jump AS, Kazimirović M, Knutzen F, Kreyling J, Land A, Latte N, Lebourgeois F, Leuschner C, Longares LA, Castillo EMD, Menzel A, Motta R, Muffler-Weigel L, Nola P, Panayotov M, Petritan AM, Petritan IC, Popa I, Roibu C, Rubio-Cuadrado A, Rydval M, Scharnweber T, Camarero JJ, Svoboda M, Toromani E, Trotsiuk V, Maaten-Theunissen MVD, Maaten EVD, Weigel R, Wilmking M, Zlatanov T, Rammig A, Zang C. Identifying drivers of non-stationary climate-growth relationships of European beech. in Science of the Total Environment. 2024;937.
doi:10.1016/j.scitotenv.2024.173321
conv_1793 .
Leifsson, Christopher, Buras, Allan, Klesse, Stefan, Baittinger, Claudia, Bat-Enerel, Banzragch, Battipaglia, Giovanna, Biondi, Franco, Stajić, Branko, Budeanu, Marius, Cada, Vojtech, Cavin, Liam, Claessens, Hugues, Cufar, Katarina, de Luis, Martin, Dorado-Linan, Isabel, Dulamsuren, Choimaa, Garamszegi, Balazs, Grabner, Michael, Hacket-Pain, Andrew, Hansen, Jon Kehlet, Hartl, Claudia, Huang, Weiwei, Janda, Pavel, Jump, Alistair S., Kazimirović, Marko, Knutzen, Florian, Kreyling, Juergen, Land, Alexander, Latte, Nicolas, Lebourgeois, Francois, Leuschner, Christoph, Longares, Luis A., Castillo, Edurne Martinez del, Menzel, Annette, Motta, Renzo, Muffler-Weigel, Lena, Nola, Paola, Panayotov, Momchil, Petritan, Any Mary, Petritan, Ion Catalin, Popa, Ionel, Roibu, Catalin-Constantin, Rubio-Cuadrado, Alvaro, Rydval, Miloš, Scharnweber, Tobias, Camarero, J. Julio, Svoboda, Miroslav, Toromani, Elvin, Trotsiuk, Volodymyr, Maaten-Theunissen, Marieke van der, Maaten, Ernst van der, Weigel, Robert, Wilmking, Martin, Zlatanov, Tzvetan, Rammig, Anja, Zang, Christian, "Identifying drivers of non-stationary climate-growth relationships of European beech" in Science of the Total Environment, 937 (2024),
https://doi.org/10.1016/j.scitotenv.2024.173321 .,
conv_1793 .
3
2
3

No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation

Klesse, S.; Peters, R.; Alfaro-Sánchez, R.; Badeau, V.; Baittinger, C.; Battipaglia, Giovanna; Bert, D.; Biondi, F.; Bosela, Michal; Budeanu, M.; Cada, Vojtech; Camarero, J.; Cavin, Liam; Claessens, H.; Cretan, A.-M.; Čufar, K.; de Luis, M.; Dorado-Liñán, I.; Dulamsuren, C.; Espelta, J.; Garamszegi, B.; Grabner, M.; Gricar, J.; Hacket-Pain, Andrew; Hansen, J.; Hartl, C.; Hevia, A.; Hobi, M.; Janda, P.; Jump, A.; Kašpar, J.; Kazimirović, Marko; Keren, Srđan; Kreyling, J.; Land, A.; Latte, N.; Lebourgeois, F.; Leuschner, C.; Levesque, Mathieu; Longares, L.; del Castillo, E.; Menzel, A.; Merela, M.; Mikoláš, M.; Motta, Renzo; Muffler, L.; Neycken, A.; Nola, P.; Panayotov, Momchil; Petritan, Any Mary; Petritan, I.; Popa, I.; Prislan, Peter; Levanič, T.; Roibu, Catalin-Constantin; Rubio-Cuadrado, Alvaro; Sanchez-Salguero, Raul; Šamonil, P.; Stajić, Branko; Svoboda, Miroslav; Tognetti, Roberto; Toromani, Elvin; Trotsiuk, Volodymyr; van der Maaten, Ernst; Van der Maaten-Theunissen, Marieke; Vannoppen, A.; Vašíčková, I.; von Arx, G.; Wilmking, Martin; Weigel, Robert; Zlatanov, Tzvetan; Zang, Christian; Buras, A.

(John Wiley and Sons Inc, 2024)

TY  - JOUR
AU  - Klesse, S.
AU  - Peters, R.
AU  - Alfaro-Sánchez, R.
AU  - Badeau, V.
AU  - Baittinger, C.
AU  - Battipaglia, Giovanna
AU  - Bert, D.
AU  - Biondi, F.
AU  - Bosela, Michal
AU  - Budeanu, M.
AU  - Cada, Vojtech
AU  - Camarero, J.
AU  - Cavin, Liam
AU  - Claessens, H.
AU  - Cretan, A.-M.
AU  - Čufar, K.
AU  - de Luis, M.
AU  - Dorado-Liñán, I.
AU  - Dulamsuren, C.
AU  - Espelta, J.
AU  - Garamszegi, B.
AU  - Grabner, M.
AU  - Gricar, J.
AU  - Hacket-Pain, Andrew
AU  - Hansen, J.
AU  - Hartl, C.
AU  - Hevia, A.
AU  - Hobi, M.
AU  - Janda, P.
AU  - Jump, A.
AU  - Kašpar, J.
AU  - Kazimirović, Marko
AU  - Keren, Srđan
AU  - Kreyling, J.
AU  - Land, A.
AU  - Latte, N.
AU  - Lebourgeois, F.
AU  - Leuschner, C.
AU  - Levesque, Mathieu
AU  - Longares, L.
AU  - del Castillo, E.
AU  - Menzel, A.
AU  - Merela, M.
AU  - Mikoláš, M.
AU  - Motta, Renzo
AU  - Muffler, L.
AU  - Neycken, A.
AU  - Nola, P.
AU  - Panayotov, Momchil
AU  - Petritan, Any Mary
AU  - Petritan, I.
AU  - Popa, I.
AU  - Prislan, Peter
AU  - Levanič, T.
AU  - Roibu, Catalin-Constantin
AU  - Rubio-Cuadrado, Alvaro
AU  - Sanchez-Salguero, Raul
AU  - Šamonil, P.
AU  - Stajić, Branko
AU  - Svoboda, Miroslav
AU  - Tognetti, Roberto
AU  - Toromani, Elvin
AU  - Trotsiuk, Volodymyr
AU  - van der Maaten, Ernst
AU  - Van der Maaten-Theunissen, Marieke
AU  - Vannoppen, A.
AU  - Vašíčková, I.
AU  - von Arx, G.
AU  - Wilmking, Martin
AU  - Weigel, Robert
AU  - Zlatanov, Tzvetan
AU  - Zang, Christian
AU  - Buras, A.
PY  - 2024
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1467
AB  - With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species. Using a unique pan-European tree-ring network of 26,430 European beech (Fagus sylvatica L.) trees from 2118 sites, we applied a linear mixed-effects modeling framework to (i) explain variation in climate-dependent growth and (ii) project growth for the near future (2021–2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, and continentality). Over the calibration period (1952–2011), the model yielded high regional explanatory power (R2 = 0.38–0.72). Considering a moderate climate change scenario (CMIP6 SSP2-4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12%–18% (interquartile range) in northwestern Central Europe and by 11%–21% in the Mediterranean region. In contrast, climate-driven growth increases are limited to around 13% of the current occurrence, where the historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3%–24% growth increase in the high-elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (−10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water-limited, a northward shift in its distributional range will be constrained by water availability.
PB  - John Wiley and Sons Inc
T2  - Global Change Biology
T1  - No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation
IS  - 10
VL  - 30
DO  - 10.1111/gcb.17546
UR  - conv_1849
ER  - 
@article{
author = "Klesse, S. and Peters, R. and Alfaro-Sánchez, R. and Badeau, V. and Baittinger, C. and Battipaglia, Giovanna and Bert, D. and Biondi, F. and Bosela, Michal and Budeanu, M. and Cada, Vojtech and Camarero, J. and Cavin, Liam and Claessens, H. and Cretan, A.-M. and Čufar, K. and de Luis, M. and Dorado-Liñán, I. and Dulamsuren, C. and Espelta, J. and Garamszegi, B. and Grabner, M. and Gricar, J. and Hacket-Pain, Andrew and Hansen, J. and Hartl, C. and Hevia, A. and Hobi, M. and Janda, P. and Jump, A. and Kašpar, J. and Kazimirović, Marko and Keren, Srđan and Kreyling, J. and Land, A. and Latte, N. and Lebourgeois, F. and Leuschner, C. and Levesque, Mathieu and Longares, L. and del Castillo, E. and Menzel, A. and Merela, M. and Mikoláš, M. and Motta, Renzo and Muffler, L. and Neycken, A. and Nola, P. and Panayotov, Momchil and Petritan, Any Mary and Petritan, I. and Popa, I. and Prislan, Peter and Levanič, T. and Roibu, Catalin-Constantin and Rubio-Cuadrado, Alvaro and Sanchez-Salguero, Raul and Šamonil, P. and Stajić, Branko and Svoboda, Miroslav and Tognetti, Roberto and Toromani, Elvin and Trotsiuk, Volodymyr and van der Maaten, Ernst and Van der Maaten-Theunissen, Marieke and Vannoppen, A. and Vašíčková, I. and von Arx, G. and Wilmking, Martin and Weigel, Robert and Zlatanov, Tzvetan and Zang, Christian and Buras, A.",
year = "2024",
abstract = "With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species. Using a unique pan-European tree-ring network of 26,430 European beech (Fagus sylvatica L.) trees from 2118 sites, we applied a linear mixed-effects modeling framework to (i) explain variation in climate-dependent growth and (ii) project growth for the near future (2021–2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, and continentality). Over the calibration period (1952–2011), the model yielded high regional explanatory power (R2 = 0.38–0.72). Considering a moderate climate change scenario (CMIP6 SSP2-4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12%–18% (interquartile range) in northwestern Central Europe and by 11%–21% in the Mediterranean region. In contrast, climate-driven growth increases are limited to around 13% of the current occurrence, where the historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3%–24% growth increase in the high-elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (−10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water-limited, a northward shift in its distributional range will be constrained by water availability.",
publisher = "John Wiley and Sons Inc",
journal = "Global Change Biology",
title = "No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation",
number = "10",
volume = "30",
doi = "10.1111/gcb.17546",
url = "conv_1849"
}
Klesse, S., Peters, R., Alfaro-Sánchez, R., Badeau, V., Baittinger, C., Battipaglia, G., Bert, D., Biondi, F., Bosela, M., Budeanu, M., Cada, V., Camarero, J., Cavin, L., Claessens, H., Cretan, A.-M., Čufar, K., de Luis, M., Dorado-Liñán, I., Dulamsuren, C., Espelta, J., Garamszegi, B., Grabner, M., Gricar, J., Hacket-Pain, A., Hansen, J., Hartl, C., Hevia, A., Hobi, M., Janda, P., Jump, A., Kašpar, J., Kazimirović, M., Keren, S., Kreyling, J., Land, A., Latte, N., Lebourgeois, F., Leuschner, C., Levesque, M., Longares, L., del Castillo, E., Menzel, A., Merela, M., Mikoláš, M., Motta, R., Muffler, L., Neycken, A., Nola, P., Panayotov, M., Petritan, A. M., Petritan, I., Popa, I., Prislan, P., Levanič, T., Roibu, C., Rubio-Cuadrado, A., Sanchez-Salguero, R., Šamonil, P., Stajić, B., Svoboda, M., Tognetti, R., Toromani, E., Trotsiuk, V., van der Maaten, E., Van der Maaten-Theunissen, M., Vannoppen, A., Vašíčková, I., von Arx, G., Wilmking, M., Weigel, R., Zlatanov, T., Zang, C.,& Buras, A.. (2024). No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation. in Global Change Biology
John Wiley and Sons Inc., 30(10).
https://doi.org/10.1111/gcb.17546
conv_1849
Klesse S, Peters R, Alfaro-Sánchez R, Badeau V, Baittinger C, Battipaglia G, Bert D, Biondi F, Bosela M, Budeanu M, Cada V, Camarero J, Cavin L, Claessens H, Cretan A, Čufar K, de Luis M, Dorado-Liñán I, Dulamsuren C, Espelta J, Garamszegi B, Grabner M, Gricar J, Hacket-Pain A, Hansen J, Hartl C, Hevia A, Hobi M, Janda P, Jump A, Kašpar J, Kazimirović M, Keren S, Kreyling J, Land A, Latte N, Lebourgeois F, Leuschner C, Levesque M, Longares L, del Castillo E, Menzel A, Merela M, Mikoláš M, Motta R, Muffler L, Neycken A, Nola P, Panayotov M, Petritan AM, Petritan I, Popa I, Prislan P, Levanič T, Roibu C, Rubio-Cuadrado A, Sanchez-Salguero R, Šamonil P, Stajić B, Svoboda M, Tognetti R, Toromani E, Trotsiuk V, van der Maaten E, Van der Maaten-Theunissen M, Vannoppen A, Vašíčková I, von Arx G, Wilmking M, Weigel R, Zlatanov T, Zang C, Buras A. No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation. in Global Change Biology. 2024;30(10).
doi:10.1111/gcb.17546
conv_1849 .
Klesse, S., Peters, R., Alfaro-Sánchez, R., Badeau, V., Baittinger, C., Battipaglia, Giovanna, Bert, D., Biondi, F., Bosela, Michal, Budeanu, M., Cada, Vojtech, Camarero, J., Cavin, Liam, Claessens, H., Cretan, A.-M., Čufar, K., de Luis, M., Dorado-Liñán, I., Dulamsuren, C., Espelta, J., Garamszegi, B., Grabner, M., Gricar, J., Hacket-Pain, Andrew, Hansen, J., Hartl, C., Hevia, A., Hobi, M., Janda, P., Jump, A., Kašpar, J., Kazimirović, Marko, Keren, Srđan, Kreyling, J., Land, A., Latte, N., Lebourgeois, F., Leuschner, C., Levesque, Mathieu, Longares, L., del Castillo, E., Menzel, A., Merela, M., Mikoláš, M., Motta, Renzo, Muffler, L., Neycken, A., Nola, P., Panayotov, Momchil, Petritan, Any Mary, Petritan, I., Popa, I., Prislan, Peter, Levanič, T., Roibu, Catalin-Constantin, Rubio-Cuadrado, Alvaro, Sanchez-Salguero, Raul, Šamonil, P., Stajić, Branko, Svoboda, Miroslav, Tognetti, Roberto, Toromani, Elvin, Trotsiuk, Volodymyr, van der Maaten, Ernst, Van der Maaten-Theunissen, Marieke, Vannoppen, A., Vašíčková, I., von Arx, G., Wilmking, Martin, Weigel, Robert, Zlatanov, Tzvetan, Zang, Christian, Buras, A., "No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation" in Global Change Biology, 30, no. 10 (2024),
https://doi.org/10.1111/gcb.17546 .,
conv_1849 .
1
3

Empirical and process-based models predict enhanced beech growth in European mountains under climate change scenarios: A multimodel approach

Bosela, Michal; Rubio-Cuadrado, Alvaro; Marcis, Peter; Merganicova, Katarina; Fleischer, Peter, Jr.; Forrester, David I.; Uhl, Enno; Avdagić, Admir; Bellan, Michal; Bielak, Kamil; Bravo, Felipe; Coll, Lluis; Cseke, Klara; del Rio, Miren; Dinca, Lucian; Dobor, Laura; Drozdowski, Stanislaw; Giammarchi, Francesco; Gomoryova, Erika; Ibrahimspahić, Aida; Kasanin-Grubin, Milica; Klopcić, Matija; Kurylyak, Viktor; Montes, Fernando; Pach, Maciej; Ruiz-Peinado, Ricardo; Skrzyszewski, Jerzy; Stajić, Branko; Stojanović, Dejan; Svoboda, Miroslav; Tonon, Giustino; Versace, Soraya; Mitrović, Suzana; Zlatanov, Tzvetan; Pretzsch, Hans; Tognetti, Roberto

(2023)

TY  - JOUR
AU  - Bosela, Michal
AU  - Rubio-Cuadrado, Alvaro
AU  - Marcis, Peter
AU  - Merganicova, Katarina
AU  - Fleischer, Peter, Jr.
AU  - Forrester, David I.
AU  - Uhl, Enno
AU  - Avdagić, Admir
AU  - Bellan, Michal
AU  - Bielak, Kamil
AU  - Bravo, Felipe
AU  - Coll, Lluis
AU  - Cseke, Klara
AU  - del Rio, Miren
AU  - Dinca, Lucian
AU  - Dobor, Laura
AU  - Drozdowski, Stanislaw
AU  - Giammarchi, Francesco
AU  - Gomoryova, Erika
AU  - Ibrahimspahić, Aida
AU  - Kasanin-Grubin, Milica
AU  - Klopcić, Matija
AU  - Kurylyak, Viktor
AU  - Montes, Fernando
AU  - Pach, Maciej
AU  - Ruiz-Peinado, Ricardo
AU  - Skrzyszewski, Jerzy
AU  - Stajić, Branko
AU  - Stojanović, Dejan
AU  - Svoboda, Miroslav
AU  - Tonon, Giustino
AU  - Versace, Soraya
AU  - Mitrović, Suzana
AU  - Zlatanov, Tzvetan
AU  - Pretzsch, Hans
AU  - Tognetti, Roberto
PY  - 2023
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1417
AB  - Process-based models and empirical modelling techniques are frequently used to (i) explore the sensitivity of tree growth to environmental variables, and (ii) predict the future growth of trees and forest stands under climate change scenarios. However, modelling approaches substantially influence predictions of the sensitivity of trees to environmen-tal factors. Here, we used tree-ring width (TRW) data from 1630 beech trees from a network of 70 plots established across European mountains to build empirical predictive growth models using various modelling approaches. In addi-tion, we used 3-PG and Biome-BGCMuSo process-based models to compare growth predictions with derived empirical models. Results revealed similar prediction errors (RMSE) across models ranging between 3.71 and 7.54 cm2 of basal area increment (BAI). The models explained most of the variability in BAI ranging from 54 % to 87 %. Selected explan-atory variables (despite being statistically highly significant) and the pattern of the growth sensitivity differed between models substantially. We identified only five factors with the same effect and the same sensitivity pattern in all empir-ical models: tree DBH, competition index, elevation, Gini index of DBH, and soil silt content. However, the sensitivity to most of the climate variables was low and inconsistent among the empirical models. Both empirical and process -based models suggest that beech in European mountains will, on average, likely experience better growth conditions under both 4.5 and 8.5 RCP scenarios. The process-based models indicated that beech may grow better across European mountains by 1.05 to 1.4 times in warmer conditions. The empirical models identified several drivers of tree growth that are not included in the current process-based models (e.g., different nutrients) but may have a sub-stantial effect on final results, particularly if they are limiting factors. Hence, future development of process-based models may build upon our findings to increase their ability to correctly capture ecosystem dynamics.
T2  - Science of the Total Environment
T1  - Empirical and process-based models predict enhanced beech growth in European mountains under climate change scenarios: A multimodel approach
VL  - 888
DO  - 10.1016/j.scitotenv.2023.164123
UR  - conv_931
ER  - 
@article{
author = "Bosela, Michal and Rubio-Cuadrado, Alvaro and Marcis, Peter and Merganicova, Katarina and Fleischer, Peter, Jr. and Forrester, David I. and Uhl, Enno and Avdagić, Admir and Bellan, Michal and Bielak, Kamil and Bravo, Felipe and Coll, Lluis and Cseke, Klara and del Rio, Miren and Dinca, Lucian and Dobor, Laura and Drozdowski, Stanislaw and Giammarchi, Francesco and Gomoryova, Erika and Ibrahimspahić, Aida and Kasanin-Grubin, Milica and Klopcić, Matija and Kurylyak, Viktor and Montes, Fernando and Pach, Maciej and Ruiz-Peinado, Ricardo and Skrzyszewski, Jerzy and Stajić, Branko and Stojanović, Dejan and Svoboda, Miroslav and Tonon, Giustino and Versace, Soraya and Mitrović, Suzana and Zlatanov, Tzvetan and Pretzsch, Hans and Tognetti, Roberto",
year = "2023",
abstract = "Process-based models and empirical modelling techniques are frequently used to (i) explore the sensitivity of tree growth to environmental variables, and (ii) predict the future growth of trees and forest stands under climate change scenarios. However, modelling approaches substantially influence predictions of the sensitivity of trees to environmen-tal factors. Here, we used tree-ring width (TRW) data from 1630 beech trees from a network of 70 plots established across European mountains to build empirical predictive growth models using various modelling approaches. In addi-tion, we used 3-PG and Biome-BGCMuSo process-based models to compare growth predictions with derived empirical models. Results revealed similar prediction errors (RMSE) across models ranging between 3.71 and 7.54 cm2 of basal area increment (BAI). The models explained most of the variability in BAI ranging from 54 % to 87 %. Selected explan-atory variables (despite being statistically highly significant) and the pattern of the growth sensitivity differed between models substantially. We identified only five factors with the same effect and the same sensitivity pattern in all empir-ical models: tree DBH, competition index, elevation, Gini index of DBH, and soil silt content. However, the sensitivity to most of the climate variables was low and inconsistent among the empirical models. Both empirical and process -based models suggest that beech in European mountains will, on average, likely experience better growth conditions under both 4.5 and 8.5 RCP scenarios. The process-based models indicated that beech may grow better across European mountains by 1.05 to 1.4 times in warmer conditions. The empirical models identified several drivers of tree growth that are not included in the current process-based models (e.g., different nutrients) but may have a sub-stantial effect on final results, particularly if they are limiting factors. Hence, future development of process-based models may build upon our findings to increase their ability to correctly capture ecosystem dynamics.",
journal = "Science of the Total Environment",
title = "Empirical and process-based models predict enhanced beech growth in European mountains under climate change scenarios: A multimodel approach",
volume = "888",
doi = "10.1016/j.scitotenv.2023.164123",
url = "conv_931"
}
Bosela, M., Rubio-Cuadrado, A., Marcis, P., Merganicova, K., Fleischer, P. Jr., Forrester, D. I., Uhl, E., Avdagić, A., Bellan, M., Bielak, K., Bravo, F., Coll, L., Cseke, K., del Rio, M., Dinca, L., Dobor, L., Drozdowski, S., Giammarchi, F., Gomoryova, E., Ibrahimspahić, A., Kasanin-Grubin, M., Klopcić, M., Kurylyak, V., Montes, F., Pach, M., Ruiz-Peinado, R., Skrzyszewski, J., Stajić, B., Stojanović, D., Svoboda, M., Tonon, G., Versace, S., Mitrović, S., Zlatanov, T., Pretzsch, H.,& Tognetti, R.. (2023). Empirical and process-based models predict enhanced beech growth in European mountains under climate change scenarios: A multimodel approach. in Science of the Total Environment, 888.
https://doi.org/10.1016/j.scitotenv.2023.164123
conv_931
Bosela M, Rubio-Cuadrado A, Marcis P, Merganicova K, Fleischer PJ, Forrester DI, Uhl E, Avdagić A, Bellan M, Bielak K, Bravo F, Coll L, Cseke K, del Rio M, Dinca L, Dobor L, Drozdowski S, Giammarchi F, Gomoryova E, Ibrahimspahić A, Kasanin-Grubin M, Klopcić M, Kurylyak V, Montes F, Pach M, Ruiz-Peinado R, Skrzyszewski J, Stajić B, Stojanović D, Svoboda M, Tonon G, Versace S, Mitrović S, Zlatanov T, Pretzsch H, Tognetti R. Empirical and process-based models predict enhanced beech growth in European mountains under climate change scenarios: A multimodel approach. in Science of the Total Environment. 2023;888.
doi:10.1016/j.scitotenv.2023.164123
conv_931 .
Bosela, Michal, Rubio-Cuadrado, Alvaro, Marcis, Peter, Merganicova, Katarina, Fleischer, Peter, Jr., Forrester, David I., Uhl, Enno, Avdagić, Admir, Bellan, Michal, Bielak, Kamil, Bravo, Felipe, Coll, Lluis, Cseke, Klara, del Rio, Miren, Dinca, Lucian, Dobor, Laura, Drozdowski, Stanislaw, Giammarchi, Francesco, Gomoryova, Erika, Ibrahimspahić, Aida, Kasanin-Grubin, Milica, Klopcić, Matija, Kurylyak, Viktor, Montes, Fernando, Pach, Maciej, Ruiz-Peinado, Ricardo, Skrzyszewski, Jerzy, Stajić, Branko, Stojanović, Dejan, Svoboda, Miroslav, Tonon, Giustino, Versace, Soraya, Mitrović, Suzana, Zlatanov, Tzvetan, Pretzsch, Hans, Tognetti, Roberto, "Empirical and process-based models predict enhanced beech growth in European mountains under climate change scenarios: A multimodel approach" in Science of the Total Environment, 888 (2023),
https://doi.org/10.1016/j.scitotenv.2023.164123 .,
conv_931 .
12
11
12

Climate-change-driven growth decline of European beech forests

del Castillo, Edurne Martinez; Zang, Christian; Buras, Allan; Hacket-Pain, Andrew; Esper, Jan; Serrano-Notivoli, Roberto; Hartl, Claudia; Weigel, Robert; Klesse, Stefan; Resco de Dios, Victor; Scharnweber, Tobias; Dorado-Linan, Isabel; Van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Jump, Alistair; Mikac, Sjepan; Banzragch, Bat-Enerel; Beck, Wolfgang; Cavin, Liam; Claessens, Hugues; Cada, Vojtech; Cufar, Katarina; Dulamsuren, Choimaa; Gricar, Jozica; Gil-Pelegrin, Eustaquio; Janda, Pavel; Kazimirović, Marko; Kreyling, Juergen; Latte, Nicolas; Leuschner, Christoph; Alberto Longares, Luis; Menzel, Annette; Merela, Maks; Motta, Renzo; Muffler, Lena; Nola, Paola; Petritan, Any Mary; Petritan, Ion Catalin; Prislan, Peter; Rubio-Cuadrado, Alvaro; Rydval, Miloš; Stajić, Branko; Svoboda, Miroslav; Toromani, Elvin; Trotsiuk, Volodymyr; Wilmking, Martin; Zlatanov, Tzvetan; de Luis, Martin

(2022)

TY  - JOUR
AU  - del Castillo, Edurne Martinez
AU  - Zang, Christian
AU  - Buras, Allan
AU  - Hacket-Pain, Andrew
AU  - Esper, Jan
AU  - Serrano-Notivoli, Roberto
AU  - Hartl, Claudia
AU  - Weigel, Robert
AU  - Klesse, Stefan
AU  - Resco de Dios, Victor
AU  - Scharnweber, Tobias
AU  - Dorado-Linan, Isabel
AU  - Van der Maaten-Theunissen, Marieke
AU  - van der Maaten, Ernst
AU  - Jump, Alistair
AU  - Mikac, Sjepan
AU  - Banzragch, Bat-Enerel
AU  - Beck, Wolfgang
AU  - Cavin, Liam
AU  - Claessens, Hugues
AU  - Cada, Vojtech
AU  - Cufar, Katarina
AU  - Dulamsuren, Choimaa
AU  - Gricar, Jozica
AU  - Gil-Pelegrin, Eustaquio
AU  - Janda, Pavel
AU  - Kazimirović, Marko
AU  - Kreyling, Juergen
AU  - Latte, Nicolas
AU  - Leuschner, Christoph
AU  - Alberto Longares, Luis
AU  - Menzel, Annette
AU  - Merela, Maks
AU  - Motta, Renzo
AU  - Muffler, Lena
AU  - Nola, Paola
AU  - Petritan, Any Mary
AU  - Petritan, Ion Catalin
AU  - Prislan, Peter
AU  - Rubio-Cuadrado, Alvaro
AU  - Rydval, Miloš
AU  - Stajić, Branko
AU  - Svoboda, Miroslav
AU  - Toromani, Elvin
AU  - Trotsiuk, Volodymyr
AU  - Wilmking, Martin
AU  - Zlatanov, Tzvetan
AU  - de Luis, Martin
PY  - 2022
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1347
AB  - The growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from -20% to more than -50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21(st) century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation. Tree ring data from a network of beech tree stands across Europe show evidence for a recent growth decline from 1986-2016 and project up to 50% growth reductions in some areas of Europe with future climate change.
T2  - Communications Biology
T1  - Climate-change-driven growth decline of European beech forests
IS  - 1
VL  - 5
DO  - 10.1038/s42003-022-03107-3
UR  - conv_1619
ER  - 
@article{
author = "del Castillo, Edurne Martinez and Zang, Christian and Buras, Allan and Hacket-Pain, Andrew and Esper, Jan and Serrano-Notivoli, Roberto and Hartl, Claudia and Weigel, Robert and Klesse, Stefan and Resco de Dios, Victor and Scharnweber, Tobias and Dorado-Linan, Isabel and Van der Maaten-Theunissen, Marieke and van der Maaten, Ernst and Jump, Alistair and Mikac, Sjepan and Banzragch, Bat-Enerel and Beck, Wolfgang and Cavin, Liam and Claessens, Hugues and Cada, Vojtech and Cufar, Katarina and Dulamsuren, Choimaa and Gricar, Jozica and Gil-Pelegrin, Eustaquio and Janda, Pavel and Kazimirović, Marko and Kreyling, Juergen and Latte, Nicolas and Leuschner, Christoph and Alberto Longares, Luis and Menzel, Annette and Merela, Maks and Motta, Renzo and Muffler, Lena and Nola, Paola and Petritan, Any Mary and Petritan, Ion Catalin and Prislan, Peter and Rubio-Cuadrado, Alvaro and Rydval, Miloš and Stajić, Branko and Svoboda, Miroslav and Toromani, Elvin and Trotsiuk, Volodymyr and Wilmking, Martin and Zlatanov, Tzvetan and de Luis, Martin",
year = "2022",
abstract = "The growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from -20% to more than -50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21(st) century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation. Tree ring data from a network of beech tree stands across Europe show evidence for a recent growth decline from 1986-2016 and project up to 50% growth reductions in some areas of Europe with future climate change.",
journal = "Communications Biology",
title = "Climate-change-driven growth decline of European beech forests",
number = "1",
volume = "5",
doi = "10.1038/s42003-022-03107-3",
url = "conv_1619"
}
del Castillo, E. M., Zang, C., Buras, A., Hacket-Pain, A., Esper, J., Serrano-Notivoli, R., Hartl, C., Weigel, R., Klesse, S., Resco de Dios, V., Scharnweber, T., Dorado-Linan, I., Van der Maaten-Theunissen, M., van der Maaten, E., Jump, A., Mikac, S., Banzragch, B., Beck, W., Cavin, L., Claessens, H., Cada, V., Cufar, K., Dulamsuren, C., Gricar, J., Gil-Pelegrin, E., Janda, P., Kazimirović, M., Kreyling, J., Latte, N., Leuschner, C., Alberto Longares, L., Menzel, A., Merela, M., Motta, R., Muffler, L., Nola, P., Petritan, A. M., Petritan, I. C., Prislan, P., Rubio-Cuadrado, A., Rydval, M., Stajić, B., Svoboda, M., Toromani, E., Trotsiuk, V., Wilmking, M., Zlatanov, T.,& de Luis, M.. (2022). Climate-change-driven growth decline of European beech forests. in Communications Biology, 5(1).
https://doi.org/10.1038/s42003-022-03107-3
conv_1619
del Castillo EM, Zang C, Buras A, Hacket-Pain A, Esper J, Serrano-Notivoli R, Hartl C, Weigel R, Klesse S, Resco de Dios V, Scharnweber T, Dorado-Linan I, Van der Maaten-Theunissen M, van der Maaten E, Jump A, Mikac S, Banzragch B, Beck W, Cavin L, Claessens H, Cada V, Cufar K, Dulamsuren C, Gricar J, Gil-Pelegrin E, Janda P, Kazimirović M, Kreyling J, Latte N, Leuschner C, Alberto Longares L, Menzel A, Merela M, Motta R, Muffler L, Nola P, Petritan AM, Petritan IC, Prislan P, Rubio-Cuadrado A, Rydval M, Stajić B, Svoboda M, Toromani E, Trotsiuk V, Wilmking M, Zlatanov T, de Luis M. Climate-change-driven growth decline of European beech forests. in Communications Biology. 2022;5(1).
doi:10.1038/s42003-022-03107-3
conv_1619 .
del Castillo, Edurne Martinez, Zang, Christian, Buras, Allan, Hacket-Pain, Andrew, Esper, Jan, Serrano-Notivoli, Roberto, Hartl, Claudia, Weigel, Robert, Klesse, Stefan, Resco de Dios, Victor, Scharnweber, Tobias, Dorado-Linan, Isabel, Van der Maaten-Theunissen, Marieke, van der Maaten, Ernst, Jump, Alistair, Mikac, Sjepan, Banzragch, Bat-Enerel, Beck, Wolfgang, Cavin, Liam, Claessens, Hugues, Cada, Vojtech, Cufar, Katarina, Dulamsuren, Choimaa, Gricar, Jozica, Gil-Pelegrin, Eustaquio, Janda, Pavel, Kazimirović, Marko, Kreyling, Juergen, Latte, Nicolas, Leuschner, Christoph, Alberto Longares, Luis, Menzel, Annette, Merela, Maks, Motta, Renzo, Muffler, Lena, Nola, Paola, Petritan, Any Mary, Petritan, Ion Catalin, Prislan, Peter, Rubio-Cuadrado, Alvaro, Rydval, Miloš, Stajić, Branko, Svoboda, Miroslav, Toromani, Elvin, Trotsiuk, Volodymyr, Wilmking, Martin, Zlatanov, Tzvetan, de Luis, Martin, "Climate-change-driven growth decline of European beech forests" in Communications Biology, 5, no. 1 (2022),
https://doi.org/10.1038/s42003-022-03107-3 .,
conv_1619 .
157
145
147

Jet stream position explains regional anomalies in European beech forest productivity and tree growth

Dorado-Linan, Isabel; Ayarzaguena, Blanca; Babst, Flurin; Xu, Guobao; Gil, Luis; Battipaglia, Giovanna; Buras, Allan; Cada, Vojtech; Julio Camarero, J.; Cavin, Liam; Claessens, Hugues; Drobyshev, Igor; Garamszegi, Balazs; Grabner, Michael; Hacket-Pain, Andrew; Hartl, Claudia; Hevia, Andrea; Janda, Pavel; Jump, Alistair S.; Kazimirović, Marko; Keren, Srđan; Kreyling, Juergen; Land, Alexander; Latte, Nicolas; Levanić, Tom; van der Maaten, Ernst; Van der Maaten-Theunissen, Marieke; Martinez-Sancho, Elisabet; Menzel, Annette; Mikolas, Martin; Motta, Renzo; Muffler, Lena; Nola, Paola; Panayotov, Momchil; Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel; Prislan, Peter; Roibu, Catalin-Constantin; Rydval, Miloš; Sanchez-Salguero, Raul; Scharnweber, Tobias; Stajić, Branko; Svoboda, Miroslav; Tegel, Willy; Teodosiu, Marius; Toromani, Elvin; Trotsiuk, Volodymyr; Turcu, Daniel-Ond; Weigel, Robert; Wilmking, Martin; Zang, Christian; Zlatanov, Tzvetan; Trouet, Valerie

(2022)

TY  - JOUR
AU  - Dorado-Linan, Isabel
AU  - Ayarzaguena, Blanca
AU  - Babst, Flurin
AU  - Xu, Guobao
AU  - Gil, Luis
AU  - Battipaglia, Giovanna
AU  - Buras, Allan
AU  - Cada, Vojtech
AU  - Julio Camarero, J.
AU  - Cavin, Liam
AU  - Claessens, Hugues
AU  - Drobyshev, Igor
AU  - Garamszegi, Balazs
AU  - Grabner, Michael
AU  - Hacket-Pain, Andrew
AU  - Hartl, Claudia
AU  - Hevia, Andrea
AU  - Janda, Pavel
AU  - Jump, Alistair S.
AU  - Kazimirović, Marko
AU  - Keren, Srđan
AU  - Kreyling, Juergen
AU  - Land, Alexander
AU  - Latte, Nicolas
AU  - Levanić, Tom
AU  - van der Maaten, Ernst
AU  - Van der Maaten-Theunissen, Marieke
AU  - Martinez-Sancho, Elisabet
AU  - Menzel, Annette
AU  - Mikolas, Martin
AU  - Motta, Renzo
AU  - Muffler, Lena
AU  - Nola, Paola
AU  - Panayotov, Momchil
AU  - Petritan, Any Mary
AU  - Petritan, Ion Catalin
AU  - Popa, Ionel
AU  - Prislan, Peter
AU  - Roibu, Catalin-Constantin
AU  - Rydval, Miloš
AU  - Sanchez-Salguero, Raul
AU  - Scharnweber, Tobias
AU  - Stajić, Branko
AU  - Svoboda, Miroslav
AU  - Tegel, Willy
AU  - Teodosiu, Marius
AU  - Toromani, Elvin
AU  - Trotsiuk, Volodymyr
AU  - Turcu, Daniel-Ond
AU  - Weigel, Robert
AU  - Wilmking, Martin
AU  - Zang, Christian
AU  - Zlatanov, Tzvetan
AU  - Trouet, Valerie
PY  - 2022
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1370
AB  - The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions. Here the authors show that extremes in the summer jet stream position over Europe create a beech forest productivity dipole between northwestern and southeastern Europe and can result in regional anomalies in forest carbon uptake and growth.
T2  - Nature Communications
T1  - Jet stream position explains regional anomalies in European beech forest productivity and tree growth
IS  - 1
VL  - 13
DO  - 10.1038/s41467-022-29615-8
UR  - conv_1629
ER  - 
@article{
author = "Dorado-Linan, Isabel and Ayarzaguena, Blanca and Babst, Flurin and Xu, Guobao and Gil, Luis and Battipaglia, Giovanna and Buras, Allan and Cada, Vojtech and Julio Camarero, J. and Cavin, Liam and Claessens, Hugues and Drobyshev, Igor and Garamszegi, Balazs and Grabner, Michael and Hacket-Pain, Andrew and Hartl, Claudia and Hevia, Andrea and Janda, Pavel and Jump, Alistair S. and Kazimirović, Marko and Keren, Srđan and Kreyling, Juergen and Land, Alexander and Latte, Nicolas and Levanić, Tom and van der Maaten, Ernst and Van der Maaten-Theunissen, Marieke and Martinez-Sancho, Elisabet and Menzel, Annette and Mikolas, Martin and Motta, Renzo and Muffler, Lena and Nola, Paola and Panayotov, Momchil and Petritan, Any Mary and Petritan, Ion Catalin and Popa, Ionel and Prislan, Peter and Roibu, Catalin-Constantin and Rydval, Miloš and Sanchez-Salguero, Raul and Scharnweber, Tobias and Stajić, Branko and Svoboda, Miroslav and Tegel, Willy and Teodosiu, Marius and Toromani, Elvin and Trotsiuk, Volodymyr and Turcu, Daniel-Ond and Weigel, Robert and Wilmking, Martin and Zang, Christian and Zlatanov, Tzvetan and Trouet, Valerie",
year = "2022",
abstract = "The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions. Here the authors show that extremes in the summer jet stream position over Europe create a beech forest productivity dipole between northwestern and southeastern Europe and can result in regional anomalies in forest carbon uptake and growth.",
journal = "Nature Communications",
title = "Jet stream position explains regional anomalies in European beech forest productivity and tree growth",
number = "1",
volume = "13",
doi = "10.1038/s41467-022-29615-8",
url = "conv_1629"
}
Dorado-Linan, I., Ayarzaguena, B., Babst, F., Xu, G., Gil, L., Battipaglia, G., Buras, A., Cada, V., Julio Camarero, J., Cavin, L., Claessens, H., Drobyshev, I., Garamszegi, B., Grabner, M., Hacket-Pain, A., Hartl, C., Hevia, A., Janda, P., Jump, A. S., Kazimirović, M., Keren, S., Kreyling, J., Land, A., Latte, N., Levanić, T., van der Maaten, E., Van der Maaten-Theunissen, M., Martinez-Sancho, E., Menzel, A., Mikolas, M., Motta, R., Muffler, L., Nola, P., Panayotov, M., Petritan, A. M., Petritan, I. C., Popa, I., Prislan, P., Roibu, C., Rydval, M., Sanchez-Salguero, R., Scharnweber, T., Stajić, B., Svoboda, M., Tegel, W., Teodosiu, M., Toromani, E., Trotsiuk, V., Turcu, D., Weigel, R., Wilmking, M., Zang, C., Zlatanov, T.,& Trouet, V.. (2022). Jet stream position explains regional anomalies in European beech forest productivity and tree growth. in Nature Communications, 13(1).
https://doi.org/10.1038/s41467-022-29615-8
conv_1629
Dorado-Linan I, Ayarzaguena B, Babst F, Xu G, Gil L, Battipaglia G, Buras A, Cada V, Julio Camarero J, Cavin L, Claessens H, Drobyshev I, Garamszegi B, Grabner M, Hacket-Pain A, Hartl C, Hevia A, Janda P, Jump AS, Kazimirović M, Keren S, Kreyling J, Land A, Latte N, Levanić T, van der Maaten E, Van der Maaten-Theunissen M, Martinez-Sancho E, Menzel A, Mikolas M, Motta R, Muffler L, Nola P, Panayotov M, Petritan AM, Petritan IC, Popa I, Prislan P, Roibu C, Rydval M, Sanchez-Salguero R, Scharnweber T, Stajić B, Svoboda M, Tegel W, Teodosiu M, Toromani E, Trotsiuk V, Turcu D, Weigel R, Wilmking M, Zang C, Zlatanov T, Trouet V. Jet stream position explains regional anomalies in European beech forest productivity and tree growth. in Nature Communications. 2022;13(1).
doi:10.1038/s41467-022-29615-8
conv_1629 .
Dorado-Linan, Isabel, Ayarzaguena, Blanca, Babst, Flurin, Xu, Guobao, Gil, Luis, Battipaglia, Giovanna, Buras, Allan, Cada, Vojtech, Julio Camarero, J., Cavin, Liam, Claessens, Hugues, Drobyshev, Igor, Garamszegi, Balazs, Grabner, Michael, Hacket-Pain, Andrew, Hartl, Claudia, Hevia, Andrea, Janda, Pavel, Jump, Alistair S., Kazimirović, Marko, Keren, Srđan, Kreyling, Juergen, Land, Alexander, Latte, Nicolas, Levanić, Tom, van der Maaten, Ernst, Van der Maaten-Theunissen, Marieke, Martinez-Sancho, Elisabet, Menzel, Annette, Mikolas, Martin, Motta, Renzo, Muffler, Lena, Nola, Paola, Panayotov, Momchil, Petritan, Any Mary, Petritan, Ion Catalin, Popa, Ionel, Prislan, Peter, Roibu, Catalin-Constantin, Rydval, Miloš, Sanchez-Salguero, Raul, Scharnweber, Tobias, Stajić, Branko, Svoboda, Miroslav, Tegel, Willy, Teodosiu, Marius, Toromani, Elvin, Trotsiuk, Volodymyr, Turcu, Daniel-Ond, Weigel, Robert, Wilmking, Martin, Zang, Christian, Zlatanov, Tzvetan, Trouet, Valerie, "Jet stream position explains regional anomalies in European beech forest productivity and tree growth" in Nature Communications, 13, no. 1 (2022),
https://doi.org/10.1038/s41467-022-29615-8 .,
conv_1629 .
17
18
18

European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests

Pretzsch, Hans; Hilmers, Torben; Uhl, Enno; Bielak, Kamil; Bosela, Michal; del Rio, Miren; Dobor, Laura; Forrester, David I.; Nagel, Thomas A.; Pach, Maciej; Avdagić, Admir; Bellan, Michal; Binder, Franz; Boncina, Andrej; Bravo, Felipe; de-Dios-Garcia, Javier; Dinca, Lucian; Drozdowski, Stanislaw; Giammarchi, Francesco; Hoehn, Maria; Ibrahimspahić, Aida; Jaworski, Andrzej; Klopcić, Matija; Kurylyak, Viktor; Levesque, Mathieu; Lombardi, Fabio; Matović, Bratislav; Ordonez, Cristobal; Petras, Rudolf; Rubio-Cuadrado, Alvaro; Stojanović, Dejan; Skrzyszewski, Jerzy; Stajić, Branko; Svoboda, Miroslav; Versace, Soraya; Zlatanov, Tzvetan; Tognetti, Roberto

(2021)

TY  - JOUR
AU  - Pretzsch, Hans
AU  - Hilmers, Torben
AU  - Uhl, Enno
AU  - Bielak, Kamil
AU  - Bosela, Michal
AU  - del Rio, Miren
AU  - Dobor, Laura
AU  - Forrester, David I.
AU  - Nagel, Thomas A.
AU  - Pach, Maciej
AU  - Avdagić, Admir
AU  - Bellan, Michal
AU  - Binder, Franz
AU  - Boncina, Andrej
AU  - Bravo, Felipe
AU  - de-Dios-Garcia, Javier
AU  - Dinca, Lucian
AU  - Drozdowski, Stanislaw
AU  - Giammarchi, Francesco
AU  - Hoehn, Maria
AU  - Ibrahimspahić, Aida
AU  - Jaworski, Andrzej
AU  - Klopcić, Matija
AU  - Kurylyak, Viktor
AU  - Levesque, Mathieu
AU  - Lombardi, Fabio
AU  - Matović, Bratislav
AU  - Ordonez, Cristobal
AU  - Petras, Rudolf
AU  - Rubio-Cuadrado, Alvaro
AU  - Stojanović, Dejan
AU  - Skrzyszewski, Jerzy
AU  - Stajić, Branko
AU  - Svoboda, Miroslav
AU  - Versace, Soraya
AU  - Zlatanov, Tzvetan
AU  - Tognetti, Roberto
PY  - 2021
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1170
AB  - Recent studies show that several tree species are spreading to higher latitudes and elevations due to climate change. European beech, presently dominating from the colline to the subalpine vegetation belt, is already present in upper montane subalpine forests and has a high potential to further advance to higher elevations in European mountain forests, where the temperature is predicted to further increase in the near future. Although essential for adaptive silviculture, it remains unknown whether the upward shift of beech could be assisted when it is mixed with Norway spruce or silver fir compared with mono-specific stands, as the species interactions under such conditions are hardly known. In this study, we posed the general hypotheses that the growth depending on age of European beech in mountain forests was similar in mono-specific and mixed-species stands and remained stable over time and space in the last two centuries. The scrutiny of these hypotheses was based on increment coring of 1240 dominant beech trees in 45 plots in mono-specific stands of beech and in 46 mixed mountain forests. We found that (i) on average, mean tree diameter increased linearly with age. The age trend was linear in both forest types, but the slope of the age-growth relationship was higher in mono-specific than in mixed mountain forests. (ii) Beech growth in mono-specific stands was stronger reduced with increasing elevation than that in mixed-species stands. (iii) Beech growth in mono-specific stands was on average higher than beech growth in mixed stands. However, at elevations  gt  1200 m, growth of beech in mixed stands was higher than that in mono-specific stands. Differences in the growth patterns among elevation zones are less pronounced now than in the past, in both mono-specific and mixed stands. As the higher and longer persisting growth rates extend the flexibility of suitable ages or size for tree harvest and removal, the longer-lasting growth may be of special relevance for multi-aged silviculture concepts. On top of their function for structure and habitat improvement, the remaining old trees may grow more in mass and value than assumed so far.
T2  - European Journal of Forest Research
T1  - European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests
EP  - 145
IS  - 1
SP  - 127
VL  - 140
DO  - 10.1007/s10342-020-01319-y
UR  - conv_929
ER  - 
@article{
author = "Pretzsch, Hans and Hilmers, Torben and Uhl, Enno and Bielak, Kamil and Bosela, Michal and del Rio, Miren and Dobor, Laura and Forrester, David I. and Nagel, Thomas A. and Pach, Maciej and Avdagić, Admir and Bellan, Michal and Binder, Franz and Boncina, Andrej and Bravo, Felipe and de-Dios-Garcia, Javier and Dinca, Lucian and Drozdowski, Stanislaw and Giammarchi, Francesco and Hoehn, Maria and Ibrahimspahić, Aida and Jaworski, Andrzej and Klopcić, Matija and Kurylyak, Viktor and Levesque, Mathieu and Lombardi, Fabio and Matović, Bratislav and Ordonez, Cristobal and Petras, Rudolf and Rubio-Cuadrado, Alvaro and Stojanović, Dejan and Skrzyszewski, Jerzy and Stajić, Branko and Svoboda, Miroslav and Versace, Soraya and Zlatanov, Tzvetan and Tognetti, Roberto",
year = "2021",
abstract = "Recent studies show that several tree species are spreading to higher latitudes and elevations due to climate change. European beech, presently dominating from the colline to the subalpine vegetation belt, is already present in upper montane subalpine forests and has a high potential to further advance to higher elevations in European mountain forests, where the temperature is predicted to further increase in the near future. Although essential for adaptive silviculture, it remains unknown whether the upward shift of beech could be assisted when it is mixed with Norway spruce or silver fir compared with mono-specific stands, as the species interactions under such conditions are hardly known. In this study, we posed the general hypotheses that the growth depending on age of European beech in mountain forests was similar in mono-specific and mixed-species stands and remained stable over time and space in the last two centuries. The scrutiny of these hypotheses was based on increment coring of 1240 dominant beech trees in 45 plots in mono-specific stands of beech and in 46 mixed mountain forests. We found that (i) on average, mean tree diameter increased linearly with age. The age trend was linear in both forest types, but the slope of the age-growth relationship was higher in mono-specific than in mixed mountain forests. (ii) Beech growth in mono-specific stands was stronger reduced with increasing elevation than that in mixed-species stands. (iii) Beech growth in mono-specific stands was on average higher than beech growth in mixed stands. However, at elevations  gt  1200 m, growth of beech in mixed stands was higher than that in mono-specific stands. Differences in the growth patterns among elevation zones are less pronounced now than in the past, in both mono-specific and mixed stands. As the higher and longer persisting growth rates extend the flexibility of suitable ages or size for tree harvest and removal, the longer-lasting growth may be of special relevance for multi-aged silviculture concepts. On top of their function for structure and habitat improvement, the remaining old trees may grow more in mass and value than assumed so far.",
journal = "European Journal of Forest Research",
title = "European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests",
pages = "145-127",
number = "1",
volume = "140",
doi = "10.1007/s10342-020-01319-y",
url = "conv_929"
}
Pretzsch, H., Hilmers, T., Uhl, E., Bielak, K., Bosela, M., del Rio, M., Dobor, L., Forrester, D. I., Nagel, T. A., Pach, M., Avdagić, A., Bellan, M., Binder, F., Boncina, A., Bravo, F., de-Dios-Garcia, J., Dinca, L., Drozdowski, S., Giammarchi, F., Hoehn, M., Ibrahimspahić, A., Jaworski, A., Klopcić, M., Kurylyak, V., Levesque, M., Lombardi, F., Matović, B., Ordonez, C., Petras, R., Rubio-Cuadrado, A., Stojanović, D., Skrzyszewski, J., Stajić, B., Svoboda, M., Versace, S., Zlatanov, T.,& Tognetti, R.. (2021). European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests. in European Journal of Forest Research, 140(1), 127-145.
https://doi.org/10.1007/s10342-020-01319-y
conv_929
Pretzsch H, Hilmers T, Uhl E, Bielak K, Bosela M, del Rio M, Dobor L, Forrester DI, Nagel TA, Pach M, Avdagić A, Bellan M, Binder F, Boncina A, Bravo F, de-Dios-Garcia J, Dinca L, Drozdowski S, Giammarchi F, Hoehn M, Ibrahimspahić A, Jaworski A, Klopcić M, Kurylyak V, Levesque M, Lombardi F, Matović B, Ordonez C, Petras R, Rubio-Cuadrado A, Stojanović D, Skrzyszewski J, Stajić B, Svoboda M, Versace S, Zlatanov T, Tognetti R. European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests. in European Journal of Forest Research. 2021;140(1):127-145.
doi:10.1007/s10342-020-01319-y
conv_929 .
Pretzsch, Hans, Hilmers, Torben, Uhl, Enno, Bielak, Kamil, Bosela, Michal, del Rio, Miren, Dobor, Laura, Forrester, David I., Nagel, Thomas A., Pach, Maciej, Avdagić, Admir, Bellan, Michal, Binder, Franz, Boncina, Andrej, Bravo, Felipe, de-Dios-Garcia, Javier, Dinca, Lucian, Drozdowski, Stanislaw, Giammarchi, Francesco, Hoehn, Maria, Ibrahimspahić, Aida, Jaworski, Andrzej, Klopcić, Matija, Kurylyak, Viktor, Levesque, Mathieu, Lombardi, Fabio, Matović, Bratislav, Ordonez, Cristobal, Petras, Rudolf, Rubio-Cuadrado, Alvaro, Stojanović, Dejan, Skrzyszewski, Jerzy, Stajić, Branko, Svoboda, Miroslav, Versace, Soraya, Zlatanov, Tzvetan, Tognetti, Roberto, "European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests" in European Journal of Forest Research, 140, no. 1 (2021):127-145,
https://doi.org/10.1007/s10342-020-01319-y .,
conv_929 .
30
28
27

Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests

del Rio, Miren; Vergarechea, Marta; Hilmers, Torben; Alday, Josu G.; Avdagić, Admir; Binder, Franz; Bosela, Michal; Dobor, Laura; Forrester, David I.; Halilović, Velid; Ibrahimspahić, Aida; Klopcić, Matija; Levesque, Mathieu; Nagel, Thomas A.; Sitkov, Zuzana; Schuetze, Gerhard; Stajić, Branko; Stojanović, Dejan; Uhl, Enno; Zlatanov, Tzvetan; Tognetti, Roberto; Pretzsch, Hans

(2021)

TY  - JOUR
AU  - del Rio, Miren
AU  - Vergarechea, Marta
AU  - Hilmers, Torben
AU  - Alday, Josu G.
AU  - Avdagić, Admir
AU  - Binder, Franz
AU  - Bosela, Michal
AU  - Dobor, Laura
AU  - Forrester, David I.
AU  - Halilović, Velid
AU  - Ibrahimspahić, Aida
AU  - Klopcić, Matija
AU  - Levesque, Mathieu
AU  - Nagel, Thomas A.
AU  - Sitkov, Zuzana
AU  - Schuetze, Gerhard
AU  - Stajić, Branko
AU  - Stojanović, Dejan
AU  - Uhl, Enno
AU  - Zlatanov, Tzvetan
AU  - Tognetti, Roberto
AU  - Pretzsch, Hans
PY  - 2021
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1275
AB  - Spruce-fir-beech mixed forests cover a large area in European mountain regions, with high ecological and socioeconomic importance. As elevation-zone systems they are highly affected by climate change, which is modifying species growth patterns and productivity shifts among species. The extent to which associated tree species can access resources and grow asynchronously may affect their resistance and persistence under climate change. Intra-specific synchrony in annual tree growth is a good indicator of species specific dependence on environmental conditions variability. However, little attention has been paid to explore the role of the inter-specific growth asynchrony in the adaptation of mixed forests to climate change. Here we used a database of 1790 treering series collected from 28 experimental plots in spruce-fir-beech mixed forests across Europe to explore how spatio-temporal patterns of the intra- and inter-specific growth synchrony relate to climate variation during the past century. We further examined whether synchrony in growth response to inter-annual environmental fluctuations depended on site conditions. We found that the inter-specific growth synchrony was always lower than the intra-specific synchrony, for both high (inter-annual fluctuations) and low frequency (mid- to long-term) growth variation, suggesting between species niche complementarity at both temporal levels. Intra- and inter -specific synchronies in inter-annual growth fluctuations significantly changed along elevation, being greater at higher elevations. Moreover, the climate warming likely induced temporal changes in synchrony, but the effect varied along the elevation gradient. The synchrony strongly intensified at lower elevations likely due to climate warming and drying conditions. Our results suggest that intra- and inter-specific growth synchrony can be used as an indicator of temporal niche complementarity among species. We conclude that spruce-fir-beech mixtures should be preferred against mono-specific forests to buffer climate change impacts in mountain regions.
T2  - Forest Ecology and Management
T1  - Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests
VL  - 479
DO  - 10.1016/j.foreco.2020.118587
UR  - conv_1512
ER  - 
@article{
author = "del Rio, Miren and Vergarechea, Marta and Hilmers, Torben and Alday, Josu G. and Avdagić, Admir and Binder, Franz and Bosela, Michal and Dobor, Laura and Forrester, David I. and Halilović, Velid and Ibrahimspahić, Aida and Klopcić, Matija and Levesque, Mathieu and Nagel, Thomas A. and Sitkov, Zuzana and Schuetze, Gerhard and Stajić, Branko and Stojanović, Dejan and Uhl, Enno and Zlatanov, Tzvetan and Tognetti, Roberto and Pretzsch, Hans",
year = "2021",
abstract = "Spruce-fir-beech mixed forests cover a large area in European mountain regions, with high ecological and socioeconomic importance. As elevation-zone systems they are highly affected by climate change, which is modifying species growth patterns and productivity shifts among species. The extent to which associated tree species can access resources and grow asynchronously may affect their resistance and persistence under climate change. Intra-specific synchrony in annual tree growth is a good indicator of species specific dependence on environmental conditions variability. However, little attention has been paid to explore the role of the inter-specific growth asynchrony in the adaptation of mixed forests to climate change. Here we used a database of 1790 treering series collected from 28 experimental plots in spruce-fir-beech mixed forests across Europe to explore how spatio-temporal patterns of the intra- and inter-specific growth synchrony relate to climate variation during the past century. We further examined whether synchrony in growth response to inter-annual environmental fluctuations depended on site conditions. We found that the inter-specific growth synchrony was always lower than the intra-specific synchrony, for both high (inter-annual fluctuations) and low frequency (mid- to long-term) growth variation, suggesting between species niche complementarity at both temporal levels. Intra- and inter -specific synchronies in inter-annual growth fluctuations significantly changed along elevation, being greater at higher elevations. Moreover, the climate warming likely induced temporal changes in synchrony, but the effect varied along the elevation gradient. The synchrony strongly intensified at lower elevations likely due to climate warming and drying conditions. Our results suggest that intra- and inter-specific growth synchrony can be used as an indicator of temporal niche complementarity among species. We conclude that spruce-fir-beech mixtures should be preferred against mono-specific forests to buffer climate change impacts in mountain regions.",
journal = "Forest Ecology and Management",
title = "Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests",
volume = "479",
doi = "10.1016/j.foreco.2020.118587",
url = "conv_1512"
}
del Rio, M., Vergarechea, M., Hilmers, T., Alday, J. G., Avdagić, A., Binder, F., Bosela, M., Dobor, L., Forrester, D. I., Halilović, V., Ibrahimspahić, A., Klopcić, M., Levesque, M., Nagel, T. A., Sitkov, Z., Schuetze, G., Stajić, B., Stojanović, D., Uhl, E., Zlatanov, T., Tognetti, R.,& Pretzsch, H.. (2021). Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests. in Forest Ecology and Management, 479.
https://doi.org/10.1016/j.foreco.2020.118587
conv_1512
del Rio M, Vergarechea M, Hilmers T, Alday JG, Avdagić A, Binder F, Bosela M, Dobor L, Forrester DI, Halilović V, Ibrahimspahić A, Klopcić M, Levesque M, Nagel TA, Sitkov Z, Schuetze G, Stajić B, Stojanović D, Uhl E, Zlatanov T, Tognetti R, Pretzsch H. Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests. in Forest Ecology and Management. 2021;479.
doi:10.1016/j.foreco.2020.118587
conv_1512 .
del Rio, Miren, Vergarechea, Marta, Hilmers, Torben, Alday, Josu G., Avdagić, Admir, Binder, Franz, Bosela, Michal, Dobor, Laura, Forrester, David I., Halilović, Velid, Ibrahimspahić, Aida, Klopcić, Matija, Levesque, Mathieu, Nagel, Thomas A., Sitkov, Zuzana, Schuetze, Gerhard, Stajić, Branko, Stojanović, Dejan, Uhl, Enno, Zlatanov, Tzvetan, Tognetti, Roberto, Pretzsch, Hans, "Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests" in Forest Ecology and Management, 479 (2021),
https://doi.org/10.1016/j.foreco.2020.118587 .,
conv_1512 .
23
19
22

Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries

Pretzsch, Hans; Hilmers, Torben; Biber, Peter; Avdagić, Admir; Binder, Franz; Boncina, Andrej; Bosela, Michal; Dobor, Laura; Forrester, David I.; Levesque, Mathieu; Ibrahimspahić, Aida; Nagel, Thomas A.; del Rio, Miren; Sitkov, Zuzana; Schuetze, Gerhard; Stajić, Branko; Stojanovi, Dejan B.; Uhl, Enno; Zlatanov, Tzvetan; Tognetti, Roberto

(2020)

TY  - JOUR
AU  - Pretzsch, Hans
AU  - Hilmers, Torben
AU  - Biber, Peter
AU  - Avdagić, Admir
AU  - Binder, Franz
AU  - Boncina, Andrej
AU  - Bosela, Michal
AU  - Dobor, Laura
AU  - Forrester, David I.
AU  - Levesque, Mathieu
AU  - Ibrahimspahić, Aida
AU  - Nagel, Thomas A.
AU  - del Rio, Miren
AU  - Sitkov, Zuzana
AU  - Schuetze, Gerhard
AU  - Stajić, Branko
AU  - Stojanovi, Dejan B.
AU  - Uhl, Enno
AU  - Zlatanov, Tzvetan
AU  - Tognetti, Roberto
PY  - 2020
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1129
AB  - In Europe, mixed mountain forests, primarily comprised of Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.), and European beech (Fagus sylvatica L.), cover about 10 x 106 ha at elevations between similar to 600 and 1600 m a.s.l. These forests provide invaluable ecosystem services. However, the growth of these forests and the competition among their main species are expected to be strongly affected by climate warming. In this study, we analyzed the growth development of spruce, fir, and beech in moist mixed mountain forests in Europe over the last 300 years. Based on tree-ring analyses on long-term observational plots, we found for all three species (i) a nondecelerating, linear diameter growth trend spanning more than 300 years; (ii) increased growth levels and trends, the latter being particularly pronounced for fir and beech; and (iii) an elevation-dependent change of fir and beech growth. Whereas in the past, the growth was highest at lower elevations, today's growth is superior at higher elevations. This spatiotemporal pattern indicates significant changes in the growth and interspecific competition at the expense of spruce in mixed mountain forests. We discuss possible causes, consequences, and silvicultural implications of these distinct growth changes in mixed mountain forests.
T2  - Canadian Journal of Forest Research
T1  - Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries
EP  - 703
IS  - 7
SP  - 689
VL  - 50
DO  - 10.1139/cjfr-2019-0368
UR  - conv_1496
ER  - 
@article{
author = "Pretzsch, Hans and Hilmers, Torben and Biber, Peter and Avdagić, Admir and Binder, Franz and Boncina, Andrej and Bosela, Michal and Dobor, Laura and Forrester, David I. and Levesque, Mathieu and Ibrahimspahić, Aida and Nagel, Thomas A. and del Rio, Miren and Sitkov, Zuzana and Schuetze, Gerhard and Stajić, Branko and Stojanovi, Dejan B. and Uhl, Enno and Zlatanov, Tzvetan and Tognetti, Roberto",
year = "2020",
abstract = "In Europe, mixed mountain forests, primarily comprised of Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.), and European beech (Fagus sylvatica L.), cover about 10 x 106 ha at elevations between similar to 600 and 1600 m a.s.l. These forests provide invaluable ecosystem services. However, the growth of these forests and the competition among their main species are expected to be strongly affected by climate warming. In this study, we analyzed the growth development of spruce, fir, and beech in moist mixed mountain forests in Europe over the last 300 years. Based on tree-ring analyses on long-term observational plots, we found for all three species (i) a nondecelerating, linear diameter growth trend spanning more than 300 years; (ii) increased growth levels and trends, the latter being particularly pronounced for fir and beech; and (iii) an elevation-dependent change of fir and beech growth. Whereas in the past, the growth was highest at lower elevations, today's growth is superior at higher elevations. This spatiotemporal pattern indicates significant changes in the growth and interspecific competition at the expense of spruce in mixed mountain forests. We discuss possible causes, consequences, and silvicultural implications of these distinct growth changes in mixed mountain forests.",
journal = "Canadian Journal of Forest Research",
title = "Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries",
pages = "703-689",
number = "7",
volume = "50",
doi = "10.1139/cjfr-2019-0368",
url = "conv_1496"
}
Pretzsch, H., Hilmers, T., Biber, P., Avdagić, A., Binder, F., Boncina, A., Bosela, M., Dobor, L., Forrester, D. I., Levesque, M., Ibrahimspahić, A., Nagel, T. A., del Rio, M., Sitkov, Z., Schuetze, G., Stajić, B., Stojanovi, D. B., Uhl, E., Zlatanov, T.,& Tognetti, R.. (2020). Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries. in Canadian Journal of Forest Research, 50(7), 689-703.
https://doi.org/10.1139/cjfr-2019-0368
conv_1496
Pretzsch H, Hilmers T, Biber P, Avdagić A, Binder F, Boncina A, Bosela M, Dobor L, Forrester DI, Levesque M, Ibrahimspahić A, Nagel TA, del Rio M, Sitkov Z, Schuetze G, Stajić B, Stojanovi DB, Uhl E, Zlatanov T, Tognetti R. Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries. in Canadian Journal of Forest Research. 2020;50(7):689-703.
doi:10.1139/cjfr-2019-0368
conv_1496 .
Pretzsch, Hans, Hilmers, Torben, Biber, Peter, Avdagić, Admir, Binder, Franz, Boncina, Andrej, Bosela, Michal, Dobor, Laura, Forrester, David I., Levesque, Mathieu, Ibrahimspahić, Aida, Nagel, Thomas A., del Rio, Miren, Sitkov, Zuzana, Schuetze, Gerhard, Stajić, Branko, Stojanovi, Dejan B., Uhl, Enno, Zlatanov, Tzvetan, Tognetti, Roberto, "Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries" in Canadian Journal of Forest Research, 50, no. 7 (2020):689-703,
https://doi.org/10.1139/cjfr-2019-0368 .,
conv_1496 .
45
39
42

The productivity of mixed mountain forests comprised of Fagus sylvatica , Picea abies , and Abies alba across Europe

Hilmers, Torben; Avdagić, Admir; Bartkowicz, Leszek; Bielak, Kamil; Binder, Franz; Boncina, Andrej; Dobor, Laura; Forrester, David I.; Hobi, Martina L.; Ibrahimspahić, Aida; Jaworski, Andrzej; Klopcić, Matija; Matović, Bratislav; Nagel, Thomas A.; Petras, Rudolf; del Rio, Miren; Stajić, Branko; Uhl, Enno; Zlatanov, Tzvetan; Tognetti, Roberto; Pretzsch, Hans

(2019)

TY  - JOUR
AU  - Hilmers, Torben
AU  - Avdagić, Admir
AU  - Bartkowicz, Leszek
AU  - Bielak, Kamil
AU  - Binder, Franz
AU  - Boncina, Andrej
AU  - Dobor, Laura
AU  - Forrester, David I.
AU  - Hobi, Martina L.
AU  - Ibrahimspahić, Aida
AU  - Jaworski, Andrzej
AU  - Klopcić, Matija
AU  - Matović, Bratislav
AU  - Nagel, Thomas A.
AU  - Petras, Rudolf
AU  - del Rio, Miren
AU  - Stajić, Branko
AU  - Uhl, Enno
AU  - Zlatanov, Tzvetan
AU  - Tognetti, Roberto
AU  - Pretzsch, Hans
PY  - 2019
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1006
AB  - Mixed mountain forests of European beech (Fagus sylvatica L.), Norway spruce (Picea abies (L.) Karst), and silver fir (Abies alba Mill.) cover a total area of more than 10 million hectares in Europe. Due to altitudinal zoning, these forests are particularly vulnerable to climate change. However, as little is known about the long-term development of the productivity and the adaptation and mitigation potential of these forest systems in Europe, reliable information on productivity is required for sustainable forest management. Using generalized additive mixed models this study investigated 60 long-term experimental plots and provides information about the productivity of mixed mountain forests across a variety of European mountain areas in a standardized way for the first time. The average periodic annual volume increment (PAI) of these forests amounts to 9.3 m(3)ha(-1)y(-1). Despite a significant increase in annual mean temperature the PAI has not changed significantly over the last 30 years. However, at the species level, we found significant changes in the growth dynamics. While beech had a PAI of 8.2 m(3)ha(-1)y(-1) over the entire period (1980-2010), the PAI of spruce dropped significantly from 14.2 to 10.8 m(3)ha(-1)y(-1), and the PAI of fir rose significantly from 7.2 to 11.3 m(3)ha(-1)y(-1). Consequently, we observed stable stand volume increments in relation to climate change.
T2  - Forestry
T1  - The productivity of mixed mountain forests comprised of Fagus sylvatica , Picea abies , and Abies alba across Europe
EP  - 522
IS  - 5
SP  - 512
VL  - 92
DO  - 10.1093/forestry/cpz035
UR  - conv_1477
ER  - 
@article{
author = "Hilmers, Torben and Avdagić, Admir and Bartkowicz, Leszek and Bielak, Kamil and Binder, Franz and Boncina, Andrej and Dobor, Laura and Forrester, David I. and Hobi, Martina L. and Ibrahimspahić, Aida and Jaworski, Andrzej and Klopcić, Matija and Matović, Bratislav and Nagel, Thomas A. and Petras, Rudolf and del Rio, Miren and Stajić, Branko and Uhl, Enno and Zlatanov, Tzvetan and Tognetti, Roberto and Pretzsch, Hans",
year = "2019",
abstract = "Mixed mountain forests of European beech (Fagus sylvatica L.), Norway spruce (Picea abies (L.) Karst), and silver fir (Abies alba Mill.) cover a total area of more than 10 million hectares in Europe. Due to altitudinal zoning, these forests are particularly vulnerable to climate change. However, as little is known about the long-term development of the productivity and the adaptation and mitigation potential of these forest systems in Europe, reliable information on productivity is required for sustainable forest management. Using generalized additive mixed models this study investigated 60 long-term experimental plots and provides information about the productivity of mixed mountain forests across a variety of European mountain areas in a standardized way for the first time. The average periodic annual volume increment (PAI) of these forests amounts to 9.3 m(3)ha(-1)y(-1). Despite a significant increase in annual mean temperature the PAI has not changed significantly over the last 30 years. However, at the species level, we found significant changes in the growth dynamics. While beech had a PAI of 8.2 m(3)ha(-1)y(-1) over the entire period (1980-2010), the PAI of spruce dropped significantly from 14.2 to 10.8 m(3)ha(-1)y(-1), and the PAI of fir rose significantly from 7.2 to 11.3 m(3)ha(-1)y(-1). Consequently, we observed stable stand volume increments in relation to climate change.",
journal = "Forestry",
title = "The productivity of mixed mountain forests comprised of Fagus sylvatica , Picea abies , and Abies alba across Europe",
pages = "522-512",
number = "5",
volume = "92",
doi = "10.1093/forestry/cpz035",
url = "conv_1477"
}
Hilmers, T., Avdagić, A., Bartkowicz, L., Bielak, K., Binder, F., Boncina, A., Dobor, L., Forrester, D. I., Hobi, M. L., Ibrahimspahić, A., Jaworski, A., Klopcić, M., Matović, B., Nagel, T. A., Petras, R., del Rio, M., Stajić, B., Uhl, E., Zlatanov, T., Tognetti, R.,& Pretzsch, H.. (2019). The productivity of mixed mountain forests comprised of Fagus sylvatica , Picea abies , and Abies alba across Europe. in Forestry, 92(5), 512-522.
https://doi.org/10.1093/forestry/cpz035
conv_1477
Hilmers T, Avdagić A, Bartkowicz L, Bielak K, Binder F, Boncina A, Dobor L, Forrester DI, Hobi ML, Ibrahimspahić A, Jaworski A, Klopcić M, Matović B, Nagel TA, Petras R, del Rio M, Stajić B, Uhl E, Zlatanov T, Tognetti R, Pretzsch H. The productivity of mixed mountain forests comprised of Fagus sylvatica , Picea abies , and Abies alba across Europe. in Forestry. 2019;92(5):512-522.
doi:10.1093/forestry/cpz035
conv_1477 .
Hilmers, Torben, Avdagić, Admir, Bartkowicz, Leszek, Bielak, Kamil, Binder, Franz, Boncina, Andrej, Dobor, Laura, Forrester, David I., Hobi, Martina L., Ibrahimspahić, Aida, Jaworski, Andrzej, Klopcić, Matija, Matović, Bratislav, Nagel, Thomas A., Petras, Rudolf, del Rio, Miren, Stajić, Branko, Uhl, Enno, Zlatanov, Tzvetan, Tognetti, Roberto, Pretzsch, Hans, "The productivity of mixed mountain forests comprised of Fagus sylvatica , Picea abies , and Abies alba across Europe" in Forestry, 92, no. 5 (2019):512-522,
https://doi.org/10.1093/forestry/cpz035 .,
conv_1477 .
66
57
9

European forest types for coppice forests in Croatia

Dekanić, S.; Dubravac, T.; Lexer, M.J.; Stajić, Branko; Zlatanov, Tzvetan; Trajkov, P.

(Pensoft Publishers, 2009)

TY  - JOUR
AU  - Dekanić, S.
AU  - Dubravac, T.
AU  - Lexer, M.J.
AU  - Stajić, Branko
AU  - Zlatanov, Tzvetan
AU  - Trajkov, P.
PY  - 2009
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/283
AB  - Coppice forests in South-Eastern Europe (SEE) cover a broad range of ecological conditions. So far approaches to structure the variety of coppice forests were either highly aggregated or relied on very specific local to regional phytocoenological classification systems which defy a coherent comparison between SEE countries and at European level. To bridge this gap this article presents a methodological approach to allocate current coppice forests in SEE to European forest types (EFT) using readily available information. The approach is presented by means of the example of Croatia, a country that shares many common features with other countries in SEE with regard to biogeographical and vegetation diversity of forests, but also with regard to the currently used methods for assessment of national forest resources and coppice forests in particular. In the presented approach the map of natural vegetation of Europe (Bohn et al., 2004) is combined with the area of regional forest offices (RFO), the forest area of Corine 2000 land cover map, and the area distribution of 12 coppice management classes within RFOs. Within each RFO, coppice management classes are linked with occurring EFTs. If more than one EFT could be linked with a particular coppice management class, random distribution of coppice forests over eligible EFTs is assumed. In total 499.687 ha (93.6% of the total coppice area) were classified, whereof for 76.4% the classification to EFTs was possible with high confidence, in other cases an approximation was made based on the available information. The presented methodology appears useful for a rapid stratification of coppice forest resources by the combined use of currently available national data on coppice forests in countries of the SEE region and available data sets at European level. As soon as plot-level national forest inventory data becomes available an evaluation and eventual improvement of the approach will be possible.
PB  - Pensoft Publishers
T2  - Silva Balcanica
T1  - European forest types for coppice forests in Croatia
EP  - 62
IS  - 10
SP  - 47
UR  - conv_2246
ER  - 
@article{
author = "Dekanić, S. and Dubravac, T. and Lexer, M.J. and Stajić, Branko and Zlatanov, Tzvetan and Trajkov, P.",
year = "2009",
abstract = "Coppice forests in South-Eastern Europe (SEE) cover a broad range of ecological conditions. So far approaches to structure the variety of coppice forests were either highly aggregated or relied on very specific local to regional phytocoenological classification systems which defy a coherent comparison between SEE countries and at European level. To bridge this gap this article presents a methodological approach to allocate current coppice forests in SEE to European forest types (EFT) using readily available information. The approach is presented by means of the example of Croatia, a country that shares many common features with other countries in SEE with regard to biogeographical and vegetation diversity of forests, but also with regard to the currently used methods for assessment of national forest resources and coppice forests in particular. In the presented approach the map of natural vegetation of Europe (Bohn et al., 2004) is combined with the area of regional forest offices (RFO), the forest area of Corine 2000 land cover map, and the area distribution of 12 coppice management classes within RFOs. Within each RFO, coppice management classes are linked with occurring EFTs. If more than one EFT could be linked with a particular coppice management class, random distribution of coppice forests over eligible EFTs is assumed. In total 499.687 ha (93.6% of the total coppice area) were classified, whereof for 76.4% the classification to EFTs was possible with high confidence, in other cases an approximation was made based on the available information. The presented methodology appears useful for a rapid stratification of coppice forest resources by the combined use of currently available national data on coppice forests in countries of the SEE region and available data sets at European level. As soon as plot-level national forest inventory data becomes available an evaluation and eventual improvement of the approach will be possible.",
publisher = "Pensoft Publishers",
journal = "Silva Balcanica",
title = "European forest types for coppice forests in Croatia",
pages = "62-47",
number = "10",
url = "conv_2246"
}
Dekanić, S., Dubravac, T., Lexer, M.J., Stajić, B., Zlatanov, T.,& Trajkov, P.. (2009). European forest types for coppice forests in Croatia. in Silva Balcanica
Pensoft Publishers.(10), 47-62.
conv_2246
Dekanić S, Dubravac T, Lexer M, Stajić B, Zlatanov T, Trajkov P. European forest types for coppice forests in Croatia. in Silva Balcanica. 2009;(10):47-62.
conv_2246 .
Dekanić, S., Dubravac, T., Lexer, M.J., Stajić, Branko, Zlatanov, Tzvetan, Trajkov, P., "European forest types for coppice forests in Croatia" in Silva Balcanica, no. 10 (2009):47-62,
conv_2246 .

Past and recent coppice forest management in some regions of South Eastern Europe

Stajić, Branko; Zlatanov, Tzvetan; Velichkov, I.; Dubravac, T.; Trajkov, P.

(Pensoft Publishers, 2009)

TY  - JOUR
AU  - Stajić, Branko
AU  - Zlatanov, Tzvetan
AU  - Velichkov, I.
AU  - Dubravac, T.
AU  - Trajkov, P.
PY  - 2009
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/281
AB  - High diversity of site conditions and vegetation patterns in South Eastern Europe (SEE), accompanied by different socio-cultural background of countries, has produced a wealth of diverse coppice stands and a variety of management practices. The paper provides an overview on past and recent coppice forest management in four selected countries in SEE: Bulgaria, Croatia, Macedonia and Serbia, in which coppice forestry has been of significant importance. The following main coppice forest types have been recognised in respect to their past management and current condition: (i) traditional coppice forests; (ii) 'high coppice' forests; (iii) coppice forests for transformation and reconstruction; (iv) coppice forests with standards and 'middle-aged' forests; (v) pollarding forests; (vi) selection coppice forests; (vii) shelterbelts (windbreaks, erosion shelterbelts, etc); (viii) oak coppices for shelling; and (ix) coppice forests subjected to no management. The paper emphasizes the contribution of sustainable management of coppice forest resources to ecological stability and economic development of SEE, which could be achieved by both considering the traditional management concepts and introducing new ecologically, economically and socially sound management practices.
PB  - Pensoft Publishers
T2  - Silva Balcanica
T1  - Past and recent coppice forest management in some regions of South Eastern Europe
EP  - 19
IS  - 10
SP  - 9
UR  - conv_2232
ER  - 
@article{
author = "Stajić, Branko and Zlatanov, Tzvetan and Velichkov, I. and Dubravac, T. and Trajkov, P.",
year = "2009",
abstract = "High diversity of site conditions and vegetation patterns in South Eastern Europe (SEE), accompanied by different socio-cultural background of countries, has produced a wealth of diverse coppice stands and a variety of management practices. The paper provides an overview on past and recent coppice forest management in four selected countries in SEE: Bulgaria, Croatia, Macedonia and Serbia, in which coppice forestry has been of significant importance. The following main coppice forest types have been recognised in respect to their past management and current condition: (i) traditional coppice forests; (ii) 'high coppice' forests; (iii) coppice forests for transformation and reconstruction; (iv) coppice forests with standards and 'middle-aged' forests; (v) pollarding forests; (vi) selection coppice forests; (vii) shelterbelts (windbreaks, erosion shelterbelts, etc); (viii) oak coppices for shelling; and (ix) coppice forests subjected to no management. The paper emphasizes the contribution of sustainable management of coppice forest resources to ecological stability and economic development of SEE, which could be achieved by both considering the traditional management concepts and introducing new ecologically, economically and socially sound management practices.",
publisher = "Pensoft Publishers",
journal = "Silva Balcanica",
title = "Past and recent coppice forest management in some regions of South Eastern Europe",
pages = "19-9",
number = "10",
url = "conv_2232"
}
Stajić, B., Zlatanov, T., Velichkov, I., Dubravac, T.,& Trajkov, P.. (2009). Past and recent coppice forest management in some regions of South Eastern Europe. in Silva Balcanica
Pensoft Publishers.(10), 9-19.
conv_2232
Stajić B, Zlatanov T, Velichkov I, Dubravac T, Trajkov P. Past and recent coppice forest management in some regions of South Eastern Europe. in Silva Balcanica. 2009;(10):9-19.
conv_2232 .
Stajić, Branko, Zlatanov, Tzvetan, Velichkov, I., Dubravac, T., Trajkov, P., "Past and recent coppice forest management in some regions of South Eastern Europe" in Silva Balcanica, no. 10 (2009):9-19,
conv_2232 .