Levesque, Mathieu

Link to this page

Authority KeyName Variants
orcid::0000-0003-0273-510X
  • Levesque, Mathieu (5)
Projects
Bavarian State Ministry of Food, Agriculture, and Forestry [7831-26625-2017] European Union [2816ERA02S]
Ministry of Science and Higher Education of the Republic of Poland Slovenian Research Agency [J4-1765]
Bavarian State Ministry of Food, Agriculture, and Forestry [#7831-26625-2017] Bulgarian National Science Fund (BNSF)
Bulgarian National Science Fund (BNSF) [DCOST 01/3/19.10.2018] Bulgarian National Service Fund (BNSF) [DCOST 01/3/19.10.2018]
COST Action CLIMO (ClimateSmart Forestry in Mountain Regions) - EU Framework Programme for Research and Innovation HORIZON 2020 [CA15226] COST (European Cooperation in Science and Technology) Action CLIMO (ClimateSmart Forestry in Mountain Regions) [CA15226]
COST (European Cooperation in Science and Technology) [CA19128] [DCOST 01/3/19.10.2018]
EU Framework Programme for Research and Innovation HORIZON 2020 EU Framework Programme for Research and Innovation HORIZON 2020 [CA15226]
European Union's HORIZON 2020 research and innovation programme under the Marie Sklodowska-Curie grant [778322] European Union's HORIZON 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant [778322]
European Union's HORIZON 2020 research and innovation programme under the Marie Skodowska-Curie Grant [778322] grant "EVA4.0" [CZ.02.1.01/0.0/0.0/16_019/0000803]
Ministry of Science, Technological Development and Innovation of the Republic of Serbia, institutional funding - 200197 (Institute of Lowland Forestry and Environment, Novi Sad) OP RDE [CZ.02.1.01/0.0/0.0/16_019/0000803]
OP RDE [EVA4.0" No. CZ.02.1.01/0.0/0.0/16_019/0000803] Ramon y Cajal fellowship [RYC-2016-20528]
SRDA [APVV-16-0325] SRDA [APVV-16-0325, APVV-15-0265]
SRDA [APVV-16-0325, APVV15-0265] University of Molise

Author's Bibliography

No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation

Klesse, S.; Peters, R.; Alfaro-Sánchez, R.; Badeau, V.; Baittinger, C.; Battipaglia, Giovanna; Bert, D.; Biondi, F.; Bosela, Michal; Budeanu, M.; Cada, Vojtech; Camarero, J.; Cavin, Liam; Claessens, H.; Cretan, A.-M.; Čufar, K.; de Luis, M.; Dorado-Liñán, I.; Dulamsuren, C.; Espelta, J.; Garamszegi, B.; Grabner, M.; Gricar, J.; Hacket-Pain, Andrew; Hansen, J.; Hartl, C.; Hevia, A.; Hobi, M.; Janda, P.; Jump, A.; Kašpar, J.; Kazimirović, Marko; Keren, Srđan; Kreyling, J.; Land, A.; Latte, N.; Lebourgeois, F.; Leuschner, C.; Levesque, Mathieu; Longares, L.; del Castillo, E.; Menzel, A.; Merela, M.; Mikoláš, M.; Motta, Renzo; Muffler, L.; Neycken, A.; Nola, P.; Panayotov, Momchil; Petritan, Any Mary; Petritan, I.; Popa, I.; Prislan, Peter; Levanič, T.; Roibu, Catalin-Constantin; Rubio-Cuadrado, Alvaro; Sanchez-Salguero, Raul; Šamonil, P.; Stajić, Branko; Svoboda, Miroslav; Tognetti, Roberto; Toromani, Elvin; Trotsiuk, Volodymyr; van der Maaten, Ernst; Van der Maaten-Theunissen, Marieke; Vannoppen, A.; Vašíčková, I.; von Arx, G.; Wilmking, Martin; Weigel, Robert; Zlatanov, Tzvetan; Zang, Christian; Buras, A.

(John Wiley and Sons Inc, 2024)

TY  - JOUR
AU  - Klesse, S.
AU  - Peters, R.
AU  - Alfaro-Sánchez, R.
AU  - Badeau, V.
AU  - Baittinger, C.
AU  - Battipaglia, Giovanna
AU  - Bert, D.
AU  - Biondi, F.
AU  - Bosela, Michal
AU  - Budeanu, M.
AU  - Cada, Vojtech
AU  - Camarero, J.
AU  - Cavin, Liam
AU  - Claessens, H.
AU  - Cretan, A.-M.
AU  - Čufar, K.
AU  - de Luis, M.
AU  - Dorado-Liñán, I.
AU  - Dulamsuren, C.
AU  - Espelta, J.
AU  - Garamszegi, B.
AU  - Grabner, M.
AU  - Gricar, J.
AU  - Hacket-Pain, Andrew
AU  - Hansen, J.
AU  - Hartl, C.
AU  - Hevia, A.
AU  - Hobi, M.
AU  - Janda, P.
AU  - Jump, A.
AU  - Kašpar, J.
AU  - Kazimirović, Marko
AU  - Keren, Srđan
AU  - Kreyling, J.
AU  - Land, A.
AU  - Latte, N.
AU  - Lebourgeois, F.
AU  - Leuschner, C.
AU  - Levesque, Mathieu
AU  - Longares, L.
AU  - del Castillo, E.
AU  - Menzel, A.
AU  - Merela, M.
AU  - Mikoláš, M.
AU  - Motta, Renzo
AU  - Muffler, L.
AU  - Neycken, A.
AU  - Nola, P.
AU  - Panayotov, Momchil
AU  - Petritan, Any Mary
AU  - Petritan, I.
AU  - Popa, I.
AU  - Prislan, Peter
AU  - Levanič, T.
AU  - Roibu, Catalin-Constantin
AU  - Rubio-Cuadrado, Alvaro
AU  - Sanchez-Salguero, Raul
AU  - Šamonil, P.
AU  - Stajić, Branko
AU  - Svoboda, Miroslav
AU  - Tognetti, Roberto
AU  - Toromani, Elvin
AU  - Trotsiuk, Volodymyr
AU  - van der Maaten, Ernst
AU  - Van der Maaten-Theunissen, Marieke
AU  - Vannoppen, A.
AU  - Vašíčková, I.
AU  - von Arx, G.
AU  - Wilmking, Martin
AU  - Weigel, Robert
AU  - Zlatanov, Tzvetan
AU  - Zang, Christian
AU  - Buras, A.
PY  - 2024
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1467
AB  - With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species. Using a unique pan-European tree-ring network of 26,430 European beech (Fagus sylvatica L.) trees from 2118 sites, we applied a linear mixed-effects modeling framework to (i) explain variation in climate-dependent growth and (ii) project growth for the near future (2021–2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, and continentality). Over the calibration period (1952–2011), the model yielded high regional explanatory power (R2 = 0.38–0.72). Considering a moderate climate change scenario (CMIP6 SSP2-4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12%–18% (interquartile range) in northwestern Central Europe and by 11%–21% in the Mediterranean region. In contrast, climate-driven growth increases are limited to around 13% of the current occurrence, where the historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3%–24% growth increase in the high-elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (−10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water-limited, a northward shift in its distributional range will be constrained by water availability.
PB  - John Wiley and Sons Inc
T2  - Global Change Biology
T1  - No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation
IS  - 10
VL  - 30
DO  - 10.1111/gcb.17546
UR  - conv_1849
ER  - 
@article{
author = "Klesse, S. and Peters, R. and Alfaro-Sánchez, R. and Badeau, V. and Baittinger, C. and Battipaglia, Giovanna and Bert, D. and Biondi, F. and Bosela, Michal and Budeanu, M. and Cada, Vojtech and Camarero, J. and Cavin, Liam and Claessens, H. and Cretan, A.-M. and Čufar, K. and de Luis, M. and Dorado-Liñán, I. and Dulamsuren, C. and Espelta, J. and Garamszegi, B. and Grabner, M. and Gricar, J. and Hacket-Pain, Andrew and Hansen, J. and Hartl, C. and Hevia, A. and Hobi, M. and Janda, P. and Jump, A. and Kašpar, J. and Kazimirović, Marko and Keren, Srđan and Kreyling, J. and Land, A. and Latte, N. and Lebourgeois, F. and Leuschner, C. and Levesque, Mathieu and Longares, L. and del Castillo, E. and Menzel, A. and Merela, M. and Mikoláš, M. and Motta, Renzo and Muffler, L. and Neycken, A. and Nola, P. and Panayotov, Momchil and Petritan, Any Mary and Petritan, I. and Popa, I. and Prislan, Peter and Levanič, T. and Roibu, Catalin-Constantin and Rubio-Cuadrado, Alvaro and Sanchez-Salguero, Raul and Šamonil, P. and Stajić, Branko and Svoboda, Miroslav and Tognetti, Roberto and Toromani, Elvin and Trotsiuk, Volodymyr and van der Maaten, Ernst and Van der Maaten-Theunissen, Marieke and Vannoppen, A. and Vašíčková, I. and von Arx, G. and Wilmking, Martin and Weigel, Robert and Zlatanov, Tzvetan and Zang, Christian and Buras, A.",
year = "2024",
abstract = "With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species. Using a unique pan-European tree-ring network of 26,430 European beech (Fagus sylvatica L.) trees from 2118 sites, we applied a linear mixed-effects modeling framework to (i) explain variation in climate-dependent growth and (ii) project growth for the near future (2021–2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, and continentality). Over the calibration period (1952–2011), the model yielded high regional explanatory power (R2 = 0.38–0.72). Considering a moderate climate change scenario (CMIP6 SSP2-4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12%–18% (interquartile range) in northwestern Central Europe and by 11%–21% in the Mediterranean region. In contrast, climate-driven growth increases are limited to around 13% of the current occurrence, where the historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3%–24% growth increase in the high-elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (−10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water-limited, a northward shift in its distributional range will be constrained by water availability.",
publisher = "John Wiley and Sons Inc",
journal = "Global Change Biology",
title = "No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation",
number = "10",
volume = "30",
doi = "10.1111/gcb.17546",
url = "conv_1849"
}
Klesse, S., Peters, R., Alfaro-Sánchez, R., Badeau, V., Baittinger, C., Battipaglia, G., Bert, D., Biondi, F., Bosela, M., Budeanu, M., Cada, V., Camarero, J., Cavin, L., Claessens, H., Cretan, A.-M., Čufar, K., de Luis, M., Dorado-Liñán, I., Dulamsuren, C., Espelta, J., Garamszegi, B., Grabner, M., Gricar, J., Hacket-Pain, A., Hansen, J., Hartl, C., Hevia, A., Hobi, M., Janda, P., Jump, A., Kašpar, J., Kazimirović, M., Keren, S., Kreyling, J., Land, A., Latte, N., Lebourgeois, F., Leuschner, C., Levesque, M., Longares, L., del Castillo, E., Menzel, A., Merela, M., Mikoláš, M., Motta, R., Muffler, L., Neycken, A., Nola, P., Panayotov, M., Petritan, A. M., Petritan, I., Popa, I., Prislan, P., Levanič, T., Roibu, C., Rubio-Cuadrado, A., Sanchez-Salguero, R., Šamonil, P., Stajić, B., Svoboda, M., Tognetti, R., Toromani, E., Trotsiuk, V., van der Maaten, E., Van der Maaten-Theunissen, M., Vannoppen, A., Vašíčková, I., von Arx, G., Wilmking, M., Weigel, R., Zlatanov, T., Zang, C.,& Buras, A.. (2024). No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation. in Global Change Biology
John Wiley and Sons Inc., 30(10).
https://doi.org/10.1111/gcb.17546
conv_1849
Klesse S, Peters R, Alfaro-Sánchez R, Badeau V, Baittinger C, Battipaglia G, Bert D, Biondi F, Bosela M, Budeanu M, Cada V, Camarero J, Cavin L, Claessens H, Cretan A, Čufar K, de Luis M, Dorado-Liñán I, Dulamsuren C, Espelta J, Garamszegi B, Grabner M, Gricar J, Hacket-Pain A, Hansen J, Hartl C, Hevia A, Hobi M, Janda P, Jump A, Kašpar J, Kazimirović M, Keren S, Kreyling J, Land A, Latte N, Lebourgeois F, Leuschner C, Levesque M, Longares L, del Castillo E, Menzel A, Merela M, Mikoláš M, Motta R, Muffler L, Neycken A, Nola P, Panayotov M, Petritan AM, Petritan I, Popa I, Prislan P, Levanič T, Roibu C, Rubio-Cuadrado A, Sanchez-Salguero R, Šamonil P, Stajić B, Svoboda M, Tognetti R, Toromani E, Trotsiuk V, van der Maaten E, Van der Maaten-Theunissen M, Vannoppen A, Vašíčková I, von Arx G, Wilmking M, Weigel R, Zlatanov T, Zang C, Buras A. No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation. in Global Change Biology. 2024;30(10).
doi:10.1111/gcb.17546
conv_1849 .
Klesse, S., Peters, R., Alfaro-Sánchez, R., Badeau, V., Baittinger, C., Battipaglia, Giovanna, Bert, D., Biondi, F., Bosela, Michal, Budeanu, M., Cada, Vojtech, Camarero, J., Cavin, Liam, Claessens, H., Cretan, A.-M., Čufar, K., de Luis, M., Dorado-Liñán, I., Dulamsuren, C., Espelta, J., Garamszegi, B., Grabner, M., Gricar, J., Hacket-Pain, Andrew, Hansen, J., Hartl, C., Hevia, A., Hobi, M., Janda, P., Jump, A., Kašpar, J., Kazimirović, Marko, Keren, Srđan, Kreyling, J., Land, A., Latte, N., Lebourgeois, F., Leuschner, C., Levesque, Mathieu, Longares, L., del Castillo, E., Menzel, A., Merela, M., Mikoláš, M., Motta, Renzo, Muffler, L., Neycken, A., Nola, P., Panayotov, Momchil, Petritan, Any Mary, Petritan, I., Popa, I., Prislan, Peter, Levanič, T., Roibu, Catalin-Constantin, Rubio-Cuadrado, Alvaro, Sanchez-Salguero, Raul, Šamonil, P., Stajić, Branko, Svoboda, Miroslav, Tognetti, Roberto, Toromani, Elvin, Trotsiuk, Volodymyr, van der Maaten, Ernst, Van der Maaten-Theunissen, Marieke, Vannoppen, A., Vašíčková, I., von Arx, G., Wilmking, Martin, Weigel, Robert, Zlatanov, Tzvetan, Zang, Christian, Buras, A., "No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation" in Global Change Biology, 30, no. 10 (2024),
https://doi.org/10.1111/gcb.17546 .,
conv_1849 .
1
3

Risks, benefits, and knowledge gaps of non-native tree species in Europe

Dimitrova, Anastazija; Csillery, Katalin; Klisz, Marcin; Levesque, Mathieu; Heinrichs, Steffi; Cailleret, Maxime; Andivia, Enrique; Madsen, Palle; Bohenius, Henrik; Cvjetković, Branislav; De Cuyper, Bart; de Dato, Giovanbattista; Ferus, Peter; Heinze, Berthold; Ivetić, Vladan; Kobolkuti, Zoltan; Lazarević, Jelena; Lazdina, Dagnija; Maaten, Tiit; Makovskis, Kristaps; Milovanović, Jelena; Monteiro, Antonio T.; Nonić, Marina; Place, Simon; Puchalka, Radoslaw; Montagnoli, Antonio

(2022)

TY  - JOUR
AU  - Dimitrova, Anastazija
AU  - Csillery, Katalin
AU  - Klisz, Marcin
AU  - Levesque, Mathieu
AU  - Heinrichs, Steffi
AU  - Cailleret, Maxime
AU  - Andivia, Enrique
AU  - Madsen, Palle
AU  - Bohenius, Henrik
AU  - Cvjetković, Branislav
AU  - De Cuyper, Bart
AU  - de Dato, Giovanbattista
AU  - Ferus, Peter
AU  - Heinze, Berthold
AU  - Ivetić, Vladan
AU  - Kobolkuti, Zoltan
AU  - Lazarević, Jelena
AU  - Lazdina, Dagnija
AU  - Maaten, Tiit
AU  - Makovskis, Kristaps
AU  - Milovanović, Jelena
AU  - Monteiro, Antonio T.
AU  - Nonić, Marina
AU  - Place, Simon
AU  - Puchalka, Radoslaw
AU  - Montagnoli, Antonio
PY  - 2022
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1288
AB  - Changing ecosystem conditions and diverse socio-economical events have contributed to an ingrained presence of non-native tree species (NNTs) in the natural and cultural European landscapes. Recent research endeavors have focused on different aspects of NNTs such as legislation, benefits, and risks for forestry, emphasizing that large knowledge gaps remain. As an attempt to fulfill part of these gaps, within the PEN-CAFoRR COST Action (CA19128) network, we established an open-access questionnaire that allows both academic experts and practitioners to provide information regarding NNTs from 20 European countries. Then, we integrated the data originating from the questionnaire, related to the country-based assessment of both peer-reviewed and grey literature, with information from available datasets (EUFORGEN and EU-Forest), which gave the main structure to the study and led to a mixed approach review. Finally, our study provided important insights into the current state of knowledge regarding NNTs. In particular, we highlighted NNTs that have shown to be less commonly addressed in research, raising caution about those characterized by an invasive behavior and used for specific purposes (e.g., wood production, soil recultivation, afforestation, and reforestation). NNTs were especially explored in the context of resilient and adaptive forest management. Moreover, we emphasized the assisted and natural northward migration of NNTs as another underscored pressing issue, which needs to be addressed by joint efforts, especially in the context of the hybridization potential. This study represents an additional effort toward the knowledge enhancement of the NNTs situation in Europe, aiming for a continuously active common source deriving from interprofessional collaboration.
T2  - Frontiers in Ecology and Evolution
T1  - Risks, benefits, and knowledge gaps of non-native tree species in Europe
VL  - 10
DO  - 10.3389/fevo.2022.908464
UR  - conv_1686
ER  - 
@article{
author = "Dimitrova, Anastazija and Csillery, Katalin and Klisz, Marcin and Levesque, Mathieu and Heinrichs, Steffi and Cailleret, Maxime and Andivia, Enrique and Madsen, Palle and Bohenius, Henrik and Cvjetković, Branislav and De Cuyper, Bart and de Dato, Giovanbattista and Ferus, Peter and Heinze, Berthold and Ivetić, Vladan and Kobolkuti, Zoltan and Lazarević, Jelena and Lazdina, Dagnija and Maaten, Tiit and Makovskis, Kristaps and Milovanović, Jelena and Monteiro, Antonio T. and Nonić, Marina and Place, Simon and Puchalka, Radoslaw and Montagnoli, Antonio",
year = "2022",
abstract = "Changing ecosystem conditions and diverse socio-economical events have contributed to an ingrained presence of non-native tree species (NNTs) in the natural and cultural European landscapes. Recent research endeavors have focused on different aspects of NNTs such as legislation, benefits, and risks for forestry, emphasizing that large knowledge gaps remain. As an attempt to fulfill part of these gaps, within the PEN-CAFoRR COST Action (CA19128) network, we established an open-access questionnaire that allows both academic experts and practitioners to provide information regarding NNTs from 20 European countries. Then, we integrated the data originating from the questionnaire, related to the country-based assessment of both peer-reviewed and grey literature, with information from available datasets (EUFORGEN and EU-Forest), which gave the main structure to the study and led to a mixed approach review. Finally, our study provided important insights into the current state of knowledge regarding NNTs. In particular, we highlighted NNTs that have shown to be less commonly addressed in research, raising caution about those characterized by an invasive behavior and used for specific purposes (e.g., wood production, soil recultivation, afforestation, and reforestation). NNTs were especially explored in the context of resilient and adaptive forest management. Moreover, we emphasized the assisted and natural northward migration of NNTs as another underscored pressing issue, which needs to be addressed by joint efforts, especially in the context of the hybridization potential. This study represents an additional effort toward the knowledge enhancement of the NNTs situation in Europe, aiming for a continuously active common source deriving from interprofessional collaboration.",
journal = "Frontiers in Ecology and Evolution",
title = "Risks, benefits, and knowledge gaps of non-native tree species in Europe",
volume = "10",
doi = "10.3389/fevo.2022.908464",
url = "conv_1686"
}
Dimitrova, A., Csillery, K., Klisz, M., Levesque, M., Heinrichs, S., Cailleret, M., Andivia, E., Madsen, P., Bohenius, H., Cvjetković, B., De Cuyper, B., de Dato, G., Ferus, P., Heinze, B., Ivetić, V., Kobolkuti, Z., Lazarević, J., Lazdina, D., Maaten, T., Makovskis, K., Milovanović, J., Monteiro, A. T., Nonić, M., Place, S., Puchalka, R.,& Montagnoli, A.. (2022). Risks, benefits, and knowledge gaps of non-native tree species in Europe. in Frontiers in Ecology and Evolution, 10.
https://doi.org/10.3389/fevo.2022.908464
conv_1686
Dimitrova A, Csillery K, Klisz M, Levesque M, Heinrichs S, Cailleret M, Andivia E, Madsen P, Bohenius H, Cvjetković B, De Cuyper B, de Dato G, Ferus P, Heinze B, Ivetić V, Kobolkuti Z, Lazarević J, Lazdina D, Maaten T, Makovskis K, Milovanović J, Monteiro AT, Nonić M, Place S, Puchalka R, Montagnoli A. Risks, benefits, and knowledge gaps of non-native tree species in Europe. in Frontiers in Ecology and Evolution. 2022;10.
doi:10.3389/fevo.2022.908464
conv_1686 .
Dimitrova, Anastazija, Csillery, Katalin, Klisz, Marcin, Levesque, Mathieu, Heinrichs, Steffi, Cailleret, Maxime, Andivia, Enrique, Madsen, Palle, Bohenius, Henrik, Cvjetković, Branislav, De Cuyper, Bart, de Dato, Giovanbattista, Ferus, Peter, Heinze, Berthold, Ivetić, Vladan, Kobolkuti, Zoltan, Lazarević, Jelena, Lazdina, Dagnija, Maaten, Tiit, Makovskis, Kristaps, Milovanović, Jelena, Monteiro, Antonio T., Nonić, Marina, Place, Simon, Puchalka, Radoslaw, Montagnoli, Antonio, "Risks, benefits, and knowledge gaps of non-native tree species in Europe" in Frontiers in Ecology and Evolution, 10 (2022),
https://doi.org/10.3389/fevo.2022.908464 .,
conv_1686 .
18
17
19

European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests

Pretzsch, Hans; Hilmers, Torben; Uhl, Enno; Bielak, Kamil; Bosela, Michal; del Rio, Miren; Dobor, Laura; Forrester, David I.; Nagel, Thomas A.; Pach, Maciej; Avdagić, Admir; Bellan, Michal; Binder, Franz; Boncina, Andrej; Bravo, Felipe; de-Dios-Garcia, Javier; Dinca, Lucian; Drozdowski, Stanislaw; Giammarchi, Francesco; Hoehn, Maria; Ibrahimspahić, Aida; Jaworski, Andrzej; Klopcić, Matija; Kurylyak, Viktor; Levesque, Mathieu; Lombardi, Fabio; Matović, Bratislav; Ordonez, Cristobal; Petras, Rudolf; Rubio-Cuadrado, Alvaro; Stojanović, Dejan; Skrzyszewski, Jerzy; Stajić, Branko; Svoboda, Miroslav; Versace, Soraya; Zlatanov, Tzvetan; Tognetti, Roberto

(2021)

TY  - JOUR
AU  - Pretzsch, Hans
AU  - Hilmers, Torben
AU  - Uhl, Enno
AU  - Bielak, Kamil
AU  - Bosela, Michal
AU  - del Rio, Miren
AU  - Dobor, Laura
AU  - Forrester, David I.
AU  - Nagel, Thomas A.
AU  - Pach, Maciej
AU  - Avdagić, Admir
AU  - Bellan, Michal
AU  - Binder, Franz
AU  - Boncina, Andrej
AU  - Bravo, Felipe
AU  - de-Dios-Garcia, Javier
AU  - Dinca, Lucian
AU  - Drozdowski, Stanislaw
AU  - Giammarchi, Francesco
AU  - Hoehn, Maria
AU  - Ibrahimspahić, Aida
AU  - Jaworski, Andrzej
AU  - Klopcić, Matija
AU  - Kurylyak, Viktor
AU  - Levesque, Mathieu
AU  - Lombardi, Fabio
AU  - Matović, Bratislav
AU  - Ordonez, Cristobal
AU  - Petras, Rudolf
AU  - Rubio-Cuadrado, Alvaro
AU  - Stojanović, Dejan
AU  - Skrzyszewski, Jerzy
AU  - Stajić, Branko
AU  - Svoboda, Miroslav
AU  - Versace, Soraya
AU  - Zlatanov, Tzvetan
AU  - Tognetti, Roberto
PY  - 2021
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1170
AB  - Recent studies show that several tree species are spreading to higher latitudes and elevations due to climate change. European beech, presently dominating from the colline to the subalpine vegetation belt, is already present in upper montane subalpine forests and has a high potential to further advance to higher elevations in European mountain forests, where the temperature is predicted to further increase in the near future. Although essential for adaptive silviculture, it remains unknown whether the upward shift of beech could be assisted when it is mixed with Norway spruce or silver fir compared with mono-specific stands, as the species interactions under such conditions are hardly known. In this study, we posed the general hypotheses that the growth depending on age of European beech in mountain forests was similar in mono-specific and mixed-species stands and remained stable over time and space in the last two centuries. The scrutiny of these hypotheses was based on increment coring of 1240 dominant beech trees in 45 plots in mono-specific stands of beech and in 46 mixed mountain forests. We found that (i) on average, mean tree diameter increased linearly with age. The age trend was linear in both forest types, but the slope of the age-growth relationship was higher in mono-specific than in mixed mountain forests. (ii) Beech growth in mono-specific stands was stronger reduced with increasing elevation than that in mixed-species stands. (iii) Beech growth in mono-specific stands was on average higher than beech growth in mixed stands. However, at elevations  gt  1200 m, growth of beech in mixed stands was higher than that in mono-specific stands. Differences in the growth patterns among elevation zones are less pronounced now than in the past, in both mono-specific and mixed stands. As the higher and longer persisting growth rates extend the flexibility of suitable ages or size for tree harvest and removal, the longer-lasting growth may be of special relevance for multi-aged silviculture concepts. On top of their function for structure and habitat improvement, the remaining old trees may grow more in mass and value than assumed so far.
T2  - European Journal of Forest Research
T1  - European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests
EP  - 145
IS  - 1
SP  - 127
VL  - 140
DO  - 10.1007/s10342-020-01319-y
UR  - conv_929
ER  - 
@article{
author = "Pretzsch, Hans and Hilmers, Torben and Uhl, Enno and Bielak, Kamil and Bosela, Michal and del Rio, Miren and Dobor, Laura and Forrester, David I. and Nagel, Thomas A. and Pach, Maciej and Avdagić, Admir and Bellan, Michal and Binder, Franz and Boncina, Andrej and Bravo, Felipe and de-Dios-Garcia, Javier and Dinca, Lucian and Drozdowski, Stanislaw and Giammarchi, Francesco and Hoehn, Maria and Ibrahimspahić, Aida and Jaworski, Andrzej and Klopcić, Matija and Kurylyak, Viktor and Levesque, Mathieu and Lombardi, Fabio and Matović, Bratislav and Ordonez, Cristobal and Petras, Rudolf and Rubio-Cuadrado, Alvaro and Stojanović, Dejan and Skrzyszewski, Jerzy and Stajić, Branko and Svoboda, Miroslav and Versace, Soraya and Zlatanov, Tzvetan and Tognetti, Roberto",
year = "2021",
abstract = "Recent studies show that several tree species are spreading to higher latitudes and elevations due to climate change. European beech, presently dominating from the colline to the subalpine vegetation belt, is already present in upper montane subalpine forests and has a high potential to further advance to higher elevations in European mountain forests, where the temperature is predicted to further increase in the near future. Although essential for adaptive silviculture, it remains unknown whether the upward shift of beech could be assisted when it is mixed with Norway spruce or silver fir compared with mono-specific stands, as the species interactions under such conditions are hardly known. In this study, we posed the general hypotheses that the growth depending on age of European beech in mountain forests was similar in mono-specific and mixed-species stands and remained stable over time and space in the last two centuries. The scrutiny of these hypotheses was based on increment coring of 1240 dominant beech trees in 45 plots in mono-specific stands of beech and in 46 mixed mountain forests. We found that (i) on average, mean tree diameter increased linearly with age. The age trend was linear in both forest types, but the slope of the age-growth relationship was higher in mono-specific than in mixed mountain forests. (ii) Beech growth in mono-specific stands was stronger reduced with increasing elevation than that in mixed-species stands. (iii) Beech growth in mono-specific stands was on average higher than beech growth in mixed stands. However, at elevations  gt  1200 m, growth of beech in mixed stands was higher than that in mono-specific stands. Differences in the growth patterns among elevation zones are less pronounced now than in the past, in both mono-specific and mixed stands. As the higher and longer persisting growth rates extend the flexibility of suitable ages or size for tree harvest and removal, the longer-lasting growth may be of special relevance for multi-aged silviculture concepts. On top of their function for structure and habitat improvement, the remaining old trees may grow more in mass and value than assumed so far.",
journal = "European Journal of Forest Research",
title = "European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests",
pages = "145-127",
number = "1",
volume = "140",
doi = "10.1007/s10342-020-01319-y",
url = "conv_929"
}
Pretzsch, H., Hilmers, T., Uhl, E., Bielak, K., Bosela, M., del Rio, M., Dobor, L., Forrester, D. I., Nagel, T. A., Pach, M., Avdagić, A., Bellan, M., Binder, F., Boncina, A., Bravo, F., de-Dios-Garcia, J., Dinca, L., Drozdowski, S., Giammarchi, F., Hoehn, M., Ibrahimspahić, A., Jaworski, A., Klopcić, M., Kurylyak, V., Levesque, M., Lombardi, F., Matović, B., Ordonez, C., Petras, R., Rubio-Cuadrado, A., Stojanović, D., Skrzyszewski, J., Stajić, B., Svoboda, M., Versace, S., Zlatanov, T.,& Tognetti, R.. (2021). European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests. in European Journal of Forest Research, 140(1), 127-145.
https://doi.org/10.1007/s10342-020-01319-y
conv_929
Pretzsch H, Hilmers T, Uhl E, Bielak K, Bosela M, del Rio M, Dobor L, Forrester DI, Nagel TA, Pach M, Avdagić A, Bellan M, Binder F, Boncina A, Bravo F, de-Dios-Garcia J, Dinca L, Drozdowski S, Giammarchi F, Hoehn M, Ibrahimspahić A, Jaworski A, Klopcić M, Kurylyak V, Levesque M, Lombardi F, Matović B, Ordonez C, Petras R, Rubio-Cuadrado A, Stojanović D, Skrzyszewski J, Stajić B, Svoboda M, Versace S, Zlatanov T, Tognetti R. European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests. in European Journal of Forest Research. 2021;140(1):127-145.
doi:10.1007/s10342-020-01319-y
conv_929 .
Pretzsch, Hans, Hilmers, Torben, Uhl, Enno, Bielak, Kamil, Bosela, Michal, del Rio, Miren, Dobor, Laura, Forrester, David I., Nagel, Thomas A., Pach, Maciej, Avdagić, Admir, Bellan, Michal, Binder, Franz, Boncina, Andrej, Bravo, Felipe, de-Dios-Garcia, Javier, Dinca, Lucian, Drozdowski, Stanislaw, Giammarchi, Francesco, Hoehn, Maria, Ibrahimspahić, Aida, Jaworski, Andrzej, Klopcić, Matija, Kurylyak, Viktor, Levesque, Mathieu, Lombardi, Fabio, Matović, Bratislav, Ordonez, Cristobal, Petras, Rudolf, Rubio-Cuadrado, Alvaro, Stojanović, Dejan, Skrzyszewski, Jerzy, Stajić, Branko, Svoboda, Miroslav, Versace, Soraya, Zlatanov, Tzvetan, Tognetti, Roberto, "European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests" in European Journal of Forest Research, 140, no. 1 (2021):127-145,
https://doi.org/10.1007/s10342-020-01319-y .,
conv_929 .
30
28
27

Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests

del Rio, Miren; Vergarechea, Marta; Hilmers, Torben; Alday, Josu G.; Avdagić, Admir; Binder, Franz; Bosela, Michal; Dobor, Laura; Forrester, David I.; Halilović, Velid; Ibrahimspahić, Aida; Klopcić, Matija; Levesque, Mathieu; Nagel, Thomas A.; Sitkov, Zuzana; Schuetze, Gerhard; Stajić, Branko; Stojanović, Dejan; Uhl, Enno; Zlatanov, Tzvetan; Tognetti, Roberto; Pretzsch, Hans

(2021)

TY  - JOUR
AU  - del Rio, Miren
AU  - Vergarechea, Marta
AU  - Hilmers, Torben
AU  - Alday, Josu G.
AU  - Avdagić, Admir
AU  - Binder, Franz
AU  - Bosela, Michal
AU  - Dobor, Laura
AU  - Forrester, David I.
AU  - Halilović, Velid
AU  - Ibrahimspahić, Aida
AU  - Klopcić, Matija
AU  - Levesque, Mathieu
AU  - Nagel, Thomas A.
AU  - Sitkov, Zuzana
AU  - Schuetze, Gerhard
AU  - Stajić, Branko
AU  - Stojanović, Dejan
AU  - Uhl, Enno
AU  - Zlatanov, Tzvetan
AU  - Tognetti, Roberto
AU  - Pretzsch, Hans
PY  - 2021
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1275
AB  - Spruce-fir-beech mixed forests cover a large area in European mountain regions, with high ecological and socioeconomic importance. As elevation-zone systems they are highly affected by climate change, which is modifying species growth patterns and productivity shifts among species. The extent to which associated tree species can access resources and grow asynchronously may affect their resistance and persistence under climate change. Intra-specific synchrony in annual tree growth is a good indicator of species specific dependence on environmental conditions variability. However, little attention has been paid to explore the role of the inter-specific growth asynchrony in the adaptation of mixed forests to climate change. Here we used a database of 1790 treering series collected from 28 experimental plots in spruce-fir-beech mixed forests across Europe to explore how spatio-temporal patterns of the intra- and inter-specific growth synchrony relate to climate variation during the past century. We further examined whether synchrony in growth response to inter-annual environmental fluctuations depended on site conditions. We found that the inter-specific growth synchrony was always lower than the intra-specific synchrony, for both high (inter-annual fluctuations) and low frequency (mid- to long-term) growth variation, suggesting between species niche complementarity at both temporal levels. Intra- and inter -specific synchronies in inter-annual growth fluctuations significantly changed along elevation, being greater at higher elevations. Moreover, the climate warming likely induced temporal changes in synchrony, but the effect varied along the elevation gradient. The synchrony strongly intensified at lower elevations likely due to climate warming and drying conditions. Our results suggest that intra- and inter-specific growth synchrony can be used as an indicator of temporal niche complementarity among species. We conclude that spruce-fir-beech mixtures should be preferred against mono-specific forests to buffer climate change impacts in mountain regions.
T2  - Forest Ecology and Management
T1  - Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests
VL  - 479
DO  - 10.1016/j.foreco.2020.118587
UR  - conv_1512
ER  - 
@article{
author = "del Rio, Miren and Vergarechea, Marta and Hilmers, Torben and Alday, Josu G. and Avdagić, Admir and Binder, Franz and Bosela, Michal and Dobor, Laura and Forrester, David I. and Halilović, Velid and Ibrahimspahić, Aida and Klopcić, Matija and Levesque, Mathieu and Nagel, Thomas A. and Sitkov, Zuzana and Schuetze, Gerhard and Stajić, Branko and Stojanović, Dejan and Uhl, Enno and Zlatanov, Tzvetan and Tognetti, Roberto and Pretzsch, Hans",
year = "2021",
abstract = "Spruce-fir-beech mixed forests cover a large area in European mountain regions, with high ecological and socioeconomic importance. As elevation-zone systems they are highly affected by climate change, which is modifying species growth patterns and productivity shifts among species. The extent to which associated tree species can access resources and grow asynchronously may affect their resistance and persistence under climate change. Intra-specific synchrony in annual tree growth is a good indicator of species specific dependence on environmental conditions variability. However, little attention has been paid to explore the role of the inter-specific growth asynchrony in the adaptation of mixed forests to climate change. Here we used a database of 1790 treering series collected from 28 experimental plots in spruce-fir-beech mixed forests across Europe to explore how spatio-temporal patterns of the intra- and inter-specific growth synchrony relate to climate variation during the past century. We further examined whether synchrony in growth response to inter-annual environmental fluctuations depended on site conditions. We found that the inter-specific growth synchrony was always lower than the intra-specific synchrony, for both high (inter-annual fluctuations) and low frequency (mid- to long-term) growth variation, suggesting between species niche complementarity at both temporal levels. Intra- and inter -specific synchronies in inter-annual growth fluctuations significantly changed along elevation, being greater at higher elevations. Moreover, the climate warming likely induced temporal changes in synchrony, but the effect varied along the elevation gradient. The synchrony strongly intensified at lower elevations likely due to climate warming and drying conditions. Our results suggest that intra- and inter-specific growth synchrony can be used as an indicator of temporal niche complementarity among species. We conclude that spruce-fir-beech mixtures should be preferred against mono-specific forests to buffer climate change impacts in mountain regions.",
journal = "Forest Ecology and Management",
title = "Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests",
volume = "479",
doi = "10.1016/j.foreco.2020.118587",
url = "conv_1512"
}
del Rio, M., Vergarechea, M., Hilmers, T., Alday, J. G., Avdagić, A., Binder, F., Bosela, M., Dobor, L., Forrester, D. I., Halilović, V., Ibrahimspahić, A., Klopcić, M., Levesque, M., Nagel, T. A., Sitkov, Z., Schuetze, G., Stajić, B., Stojanović, D., Uhl, E., Zlatanov, T., Tognetti, R.,& Pretzsch, H.. (2021). Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests. in Forest Ecology and Management, 479.
https://doi.org/10.1016/j.foreco.2020.118587
conv_1512
del Rio M, Vergarechea M, Hilmers T, Alday JG, Avdagić A, Binder F, Bosela M, Dobor L, Forrester DI, Halilović V, Ibrahimspahić A, Klopcić M, Levesque M, Nagel TA, Sitkov Z, Schuetze G, Stajić B, Stojanović D, Uhl E, Zlatanov T, Tognetti R, Pretzsch H. Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests. in Forest Ecology and Management. 2021;479.
doi:10.1016/j.foreco.2020.118587
conv_1512 .
del Rio, Miren, Vergarechea, Marta, Hilmers, Torben, Alday, Josu G., Avdagić, Admir, Binder, Franz, Bosela, Michal, Dobor, Laura, Forrester, David I., Halilović, Velid, Ibrahimspahić, Aida, Klopcić, Matija, Levesque, Mathieu, Nagel, Thomas A., Sitkov, Zuzana, Schuetze, Gerhard, Stajić, Branko, Stojanović, Dejan, Uhl, Enno, Zlatanov, Tzvetan, Tognetti, Roberto, Pretzsch, Hans, "Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests" in Forest Ecology and Management, 479 (2021),
https://doi.org/10.1016/j.foreco.2020.118587 .,
conv_1512 .
23
19
22

Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries

Pretzsch, Hans; Hilmers, Torben; Biber, Peter; Avdagić, Admir; Binder, Franz; Boncina, Andrej; Bosela, Michal; Dobor, Laura; Forrester, David I.; Levesque, Mathieu; Ibrahimspahić, Aida; Nagel, Thomas A.; del Rio, Miren; Sitkov, Zuzana; Schuetze, Gerhard; Stajić, Branko; Stojanovi, Dejan B.; Uhl, Enno; Zlatanov, Tzvetan; Tognetti, Roberto

(2020)

TY  - JOUR
AU  - Pretzsch, Hans
AU  - Hilmers, Torben
AU  - Biber, Peter
AU  - Avdagić, Admir
AU  - Binder, Franz
AU  - Boncina, Andrej
AU  - Bosela, Michal
AU  - Dobor, Laura
AU  - Forrester, David I.
AU  - Levesque, Mathieu
AU  - Ibrahimspahić, Aida
AU  - Nagel, Thomas A.
AU  - del Rio, Miren
AU  - Sitkov, Zuzana
AU  - Schuetze, Gerhard
AU  - Stajić, Branko
AU  - Stojanovi, Dejan B.
AU  - Uhl, Enno
AU  - Zlatanov, Tzvetan
AU  - Tognetti, Roberto
PY  - 2020
UR  - https://omorika.sfb.bg.ac.rs/handle/123456789/1129
AB  - In Europe, mixed mountain forests, primarily comprised of Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.), and European beech (Fagus sylvatica L.), cover about 10 x 106 ha at elevations between similar to 600 and 1600 m a.s.l. These forests provide invaluable ecosystem services. However, the growth of these forests and the competition among their main species are expected to be strongly affected by climate warming. In this study, we analyzed the growth development of spruce, fir, and beech in moist mixed mountain forests in Europe over the last 300 years. Based on tree-ring analyses on long-term observational plots, we found for all three species (i) a nondecelerating, linear diameter growth trend spanning more than 300 years; (ii) increased growth levels and trends, the latter being particularly pronounced for fir and beech; and (iii) an elevation-dependent change of fir and beech growth. Whereas in the past, the growth was highest at lower elevations, today's growth is superior at higher elevations. This spatiotemporal pattern indicates significant changes in the growth and interspecific competition at the expense of spruce in mixed mountain forests. We discuss possible causes, consequences, and silvicultural implications of these distinct growth changes in mixed mountain forests.
T2  - Canadian Journal of Forest Research
T1  - Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries
EP  - 703
IS  - 7
SP  - 689
VL  - 50
DO  - 10.1139/cjfr-2019-0368
UR  - conv_1496
ER  - 
@article{
author = "Pretzsch, Hans and Hilmers, Torben and Biber, Peter and Avdagić, Admir and Binder, Franz and Boncina, Andrej and Bosela, Michal and Dobor, Laura and Forrester, David I. and Levesque, Mathieu and Ibrahimspahić, Aida and Nagel, Thomas A. and del Rio, Miren and Sitkov, Zuzana and Schuetze, Gerhard and Stajić, Branko and Stojanovi, Dejan B. and Uhl, Enno and Zlatanov, Tzvetan and Tognetti, Roberto",
year = "2020",
abstract = "In Europe, mixed mountain forests, primarily comprised of Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.), and European beech (Fagus sylvatica L.), cover about 10 x 106 ha at elevations between similar to 600 and 1600 m a.s.l. These forests provide invaluable ecosystem services. However, the growth of these forests and the competition among their main species are expected to be strongly affected by climate warming. In this study, we analyzed the growth development of spruce, fir, and beech in moist mixed mountain forests in Europe over the last 300 years. Based on tree-ring analyses on long-term observational plots, we found for all three species (i) a nondecelerating, linear diameter growth trend spanning more than 300 years; (ii) increased growth levels and trends, the latter being particularly pronounced for fir and beech; and (iii) an elevation-dependent change of fir and beech growth. Whereas in the past, the growth was highest at lower elevations, today's growth is superior at higher elevations. This spatiotemporal pattern indicates significant changes in the growth and interspecific competition at the expense of spruce in mixed mountain forests. We discuss possible causes, consequences, and silvicultural implications of these distinct growth changes in mixed mountain forests.",
journal = "Canadian Journal of Forest Research",
title = "Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries",
pages = "703-689",
number = "7",
volume = "50",
doi = "10.1139/cjfr-2019-0368",
url = "conv_1496"
}
Pretzsch, H., Hilmers, T., Biber, P., Avdagić, A., Binder, F., Boncina, A., Bosela, M., Dobor, L., Forrester, D. I., Levesque, M., Ibrahimspahić, A., Nagel, T. A., del Rio, M., Sitkov, Z., Schuetze, G., Stajić, B., Stojanovi, D. B., Uhl, E., Zlatanov, T.,& Tognetti, R.. (2020). Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries. in Canadian Journal of Forest Research, 50(7), 689-703.
https://doi.org/10.1139/cjfr-2019-0368
conv_1496
Pretzsch H, Hilmers T, Biber P, Avdagić A, Binder F, Boncina A, Bosela M, Dobor L, Forrester DI, Levesque M, Ibrahimspahić A, Nagel TA, del Rio M, Sitkov Z, Schuetze G, Stajić B, Stojanovi DB, Uhl E, Zlatanov T, Tognetti R. Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries. in Canadian Journal of Forest Research. 2020;50(7):689-703.
doi:10.1139/cjfr-2019-0368
conv_1496 .
Pretzsch, Hans, Hilmers, Torben, Biber, Peter, Avdagić, Admir, Binder, Franz, Boncina, Andrej, Bosela, Michal, Dobor, Laura, Forrester, David I., Levesque, Mathieu, Ibrahimspahić, Aida, Nagel, Thomas A., del Rio, Miren, Sitkov, Zuzana, Schuetze, Gerhard, Stajić, Branko, Stojanovi, Dejan B., Uhl, Enno, Zlatanov, Tzvetan, Tognetti, Roberto, "Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries" in Canadian Journal of Forest Research, 50, no. 7 (2020):689-703,
https://doi.org/10.1139/cjfr-2019-0368 .,
conv_1496 .
45
39
42