The Spaces of Ultradistributions Over ℝ+d and the Weyl Calculus of Pseudo-Differential Operators
Nema prikaza
Poglavlje u monografiji (Objavljena verzija)

Metapodaci
Prikaz svih podataka o dokumentuApstrakt
In this paper we introduce classes of ultradifferentiable functions and the corresponding ultradistributions on ℝ+d, i.e. Gαβ(ℝ+d) and (Gαβ(ℝ+d))′, α,β gt 0, respectively. We give their characterisation through the Laguerre coefficients estimate. Furthermore, we define the modified fractional power of the partial Hankel-Clifford transform and show that this transformation is a topological isomorphism on Gαα(ℝ+d), α≥1. We also investigate the boundedness of the Weyl pseudo-differential operators with symbols from the previously introduced spaces.
Ključne reči:
Ultr / Multi-dimensional Hermite and Laguerre expansions of ultradistributions / Laguerre functions / Hermite functions / Gelfand-Shilov spaces / 47G30 / 47G10 / 46F12 / 46F05 / 44A15 / 42B10 / 35S05 / 33C45Izvor:
Trends in Mathematics, 2024, 5, 197-207Izdavač:
- Springer Science and Business Media Deutschland GmbH
Institucija/grupa
Šumarski fakultetTY - CHAP AU - Jakšić, Smiljana AU - Pilipović, S. PY - 2024 UR - https://omorika.sfb.bg.ac.rs/handle/123456789/1473 AB - In this paper we introduce classes of ultradifferentiable functions and the corresponding ultradistributions on ℝ+d, i.e. Gαβ(ℝ+d) and (Gαβ(ℝ+d))′, α,β gt 0, respectively. We give their characterisation through the Laguerre coefficients estimate. Furthermore, we define the modified fractional power of the partial Hankel-Clifford transform and show that this transformation is a topological isomorphism on Gαα(ℝ+d), α≥1. We also investigate the boundedness of the Weyl pseudo-differential operators with symbols from the previously introduced spaces. PB - Springer Science and Business Media Deutschland GmbH T2 - Trends in Mathematics T1 - The Spaces of Ultradistributions Over ℝ+d and the Weyl Calculus of Pseudo-Differential Operators EP - 207 SP - 197 VL - 5 DO - 10.1007/978-3-031-57005-6_21 UR - conv_1863 ER -
@inbook{ author = "Jakšić, Smiljana and Pilipović, S.", year = "2024", abstract = "In this paper we introduce classes of ultradifferentiable functions and the corresponding ultradistributions on ℝ+d, i.e. Gαβ(ℝ+d) and (Gαβ(ℝ+d))′, α,β gt 0, respectively. We give their characterisation through the Laguerre coefficients estimate. Furthermore, we define the modified fractional power of the partial Hankel-Clifford transform and show that this transformation is a topological isomorphism on Gαα(ℝ+d), α≥1. We also investigate the boundedness of the Weyl pseudo-differential operators with symbols from the previously introduced spaces.", publisher = "Springer Science and Business Media Deutschland GmbH", journal = "Trends in Mathematics", booktitle = "The Spaces of Ultradistributions Over ℝ+d and the Weyl Calculus of Pseudo-Differential Operators", pages = "207-197", volume = "5", doi = "10.1007/978-3-031-57005-6_21", url = "conv_1863" }
Jakšić, S.,& Pilipović, S.. (2024). The Spaces of Ultradistributions Over ℝ+d and the Weyl Calculus of Pseudo-Differential Operators. in Trends in Mathematics Springer Science and Business Media Deutschland GmbH., 5, 197-207. https://doi.org/10.1007/978-3-031-57005-6_21 conv_1863
Jakšić S, Pilipović S. The Spaces of Ultradistributions Over ℝ+d and the Weyl Calculus of Pseudo-Differential Operators. in Trends in Mathematics. 2024;5:197-207. doi:10.1007/978-3-031-57005-6_21 conv_1863 .
Jakšić, Smiljana, Pilipović, S., "The Spaces of Ultradistributions Over ℝ+d and the Weyl Calculus of Pseudo-Differential Operators" in Trends in Mathematics, 5 (2024):197-207, https://doi.org/10.1007/978-3-031-57005-6_21 ., conv_1863 .